Skip to main content
Log in

Frequent Occurrence of Discontinuous Dynamic Recrystallization in Ti-6Al-4V Alloy with α′ Martensite Starting Microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural conversion mechanism in an α′ martensite starting microstructure during hot deformation (at 973 K (700 °C)-10 s−1) of the Ti-6Al-4V alloy is studied through detailed microstructural observations, kinetic analysis of deformation in the microstructure, and various theoretical models. After compressing the α′ starting microstructure at 973 K (700 °C)-10 s−1 and at a height strain of 0.8, it is observed that the α′ starting microstructure with acicular morphology evolved into an ultrafine-grained microstructure with an average grain size of 0.2 μm and a high fraction of high-angle grain boundaries. At the initial stage of deformation, subgrain formation in martensite variants and the formation of new grains with high-angle boundaries at interfaces of martensite variants, and \( \{ 10\bar{1}1\} \) twins are dominant. On increasing the height strain to 0.8, discontinuous dynamic recrystallization (DDRX) along with heterogeneous nucleation and fragmentation of grains with high-angle boundaries becomes dominant. In contrast, in the case of an (α + β) starting microstructure, continuous dynamic recrystallization (CDRX) is dominant throughout the deformation process. Thus, we found that DDRX becomes dominant by changing the starting microstructure from the conventional (α + β) to the acicular α′ martensite one. This behavior of the α′ martensite microstructure is attributed to the considerable number of nucleation sites such as dislocations, interfaces of martensite variants and \( \{ 10\bar{1}1\} \) twins, and the high-speed grain fragmentation along with subgrain formation in the α′ starting microstructure during the initial stage of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K.S. Kumar, H. Van Swygenhoven, S. Suresh: Acta Mater., 51 (2003) 5743-74.

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci., 45 (2000) 103-189.

    Article  CAS  Google Scholar 

  3. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauser, Y.T. Zhu: JOM, 58 (2006) 33-39.

    Article  Google Scholar 

  4. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 51 (2006) 881-981.

    Article  CAS  Google Scholar 

  5. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee: Scripta Mater., 43 (2000) 819-24.

    Article  CAS  Google Scholar 

  6. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakherjee, S.Yu. Mironov, S.L. Semiatin: Scripta Mater., 51 (2004) 1147-51.

    Article  CAS  Google Scholar 

  7. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett: Mater. Sci. Eng., A238 (1997) 219-74.

    CAS  Google Scholar 

  8. I. Weiss and S. L. Semiatin: Mater. Sci. Eng., A263 (1999) 243-56.

    CAS  Google Scholar 

  9. Y.G. Ko, C.S. Lee, D.H. Shin: Scripta Mater., 58 (2008) 1094-97.

    Article  CAS  Google Scholar 

  10. S. Tamirisakandala, Y.V.R.K. Prasad, S.C. Medeiros, W.J. Frazier, J.C. Malas, B. Dutta: Adv. Eng. Mater., 5(9) (2003) 667-69.

    Article  CAS  Google Scholar 

  11. T. Seshacharyulu and B. Dutta: Scripta Mater., 46 (2002) 673-78.

    Article  CAS  Google Scholar 

  12. T. Furuhara, B. Poorganji, H. Abe, T. Maki: JOM, 59 (2007) 64-67.

    Article  CAS  Google Scholar 

  13. S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin: Acta Mater., 59 (2011) 4138-50.

    Article  CAS  Google Scholar 

  14. F. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena. Oxford: Elsevier; 1995.

    Google Scholar 

  15. H. Inagaki: Z. Metall., 86 (1995) 643-50.

    CAS  Google Scholar 

  16. C.H. Park, Y.G. Ko, J.W. Park, C.S. Lee: Mater. Sci. Eng., A496 (2008) 150-58.

    CAS  Google Scholar 

  17. H. Matsumoto, S.H. Lee, Y. Ono, Y. Li, A. Chiba: Adv. Eng. Mater., 13 (2011) 470-74.

    Article  CAS  Google Scholar 

  18. Y. Li, E. Onodera, H. Matsumoto, Y. Koizumi, S. Yu, A. Chiba: ISIJ international, 51 (2011) 782-87.

    Article  CAS  Google Scholar 

  19. A. K. Koul and J.P. Immarigeon: Acta Metall., 35 (1987) 1791-805.

    Article  CAS  Google Scholar 

  20. S. Guillard, M. Thirukkonda, P.K. Chaudhury: in I. Weiss, R. Srinivasan, P. Bania, D. Eylon, S.L. Semiatin (Eds.), Advances in the Science and Technology of Titanium Alloy Processing, TMS, Warrendale, PA, 1997, pp. 93-100.

    Google Scholar 

  21. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad: Mater. Sci. Eng., A325 (2002) 112-25.

    CAS  Google Scholar 

  22. S.L. Semiatin, V. Seetharaman, I. Weiss: Mater. Sci. Eng., A263 (1999) 257-71.

    CAS  Google Scholar 

  23. H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, A. Chiba: Mater. Sci. Eng., 528A (2011) 1512-20.

    Google Scholar 

  24. M.J. Luton and C.M. Sellars: Acta Metall., 17 (1969) 1033-43.

    Article  CAS  Google Scholar 

  25. J.W. Christian: The Theory of Transformation in Metals and Alloys, Part I, Pergamon Press, Oxford, 1981.

  26. W. Roberts, H. Boden, B. Ahlblom: Metal Sci., 13 (1979) 195.

    Article  CAS  Google Scholar 

  27. M. El Wahabi, J. M. Cabrera, J. M. Prado: Mater. Sci. Eng., A343 (2003) 116-25.

    Google Scholar 

  28. J. Lin and F.P.E. Dunne: Int. J. Mech. Sci., 43 (2001) 595-609.

    Article  Google Scholar 

  29. J. Lin and J.B. Yang: Int. J. Plasticity, 15(11) (1999) 1181-96.

    Article  CAS  Google Scholar 

  30. J. Luo, M. Li, W. Yu, H. Li: Mater. Design, 31 (2010) 741-48.

    Article  CAS  Google Scholar 

  31. W.J. Kim: Mater. Sci. Eng., A277 (2000) 134-42.

    CAS  Google Scholar 

  32. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad: Mater. Sci. Eng., A284 (2000) 184-94.

    CAS  Google Scholar 

  33. H.J. McQueen, D.L. Bourell, in: A.K. Sachdev, J.D. Embury, (Eds.), Formability and Metallurgical Structure, TMS, Warrendale, PA, 1987, pp. 341-68.

    Google Scholar 

  34. F. Dyment and C.M. Libanati: J. Mater. Sci., 3 (1968) 349-59.

    Article  CAS  Google Scholar 

  35. M. Doner and H. Conrad: Metall. Trans., 4 (1973) 2809-17.

    Article  CAS  Google Scholar 

  36. G.A. Sargent, A.P. Zane, P.N. Fagin, A.K. Ghosh, S.L. Semiatin: Metall. Mater. Trans., 39A (2008) 2949-64.

    Article  CAS  Google Scholar 

  37. R.S. Mishra, V.V. Stolyarov, C. Echer, R.Z. Valiev, A.K. Mukherjee: Mater. Sci. Eng., A298 (2001) 44-55.

    CAS  Google Scholar 

  38. Gourdet and F. Montheillet: Acta Mater., 51 (2003) 2685-2699.

    Article  CAS  Google Scholar 

  39. A. Laasraoui and J.J. Jonas: Metall. Trans. A, 22 (1991) 1545-58.

    Article  Google Scholar 

  40. S.L. Semiatin and D.U. Furrer: in ASM Handbook, vol. 22, Fundamentals of Modeling for Metals Processing, S.L. Semiatin and D.U. Furrer, eds., ASM International, Materials Park, OH, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Matsumoto.

Additional information

Manuscript submitted April 6, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, H., Bin, L., Lee, SH. et al. Frequent Occurrence of Discontinuous Dynamic Recrystallization in Ti-6Al-4V Alloy with α′ Martensite Starting Microstructure. Metall Mater Trans A 44, 3245–3260 (2013). https://doi.org/10.1007/s11661-013-1655-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1655-5

Keywords

Navigation