Microstructure and Mechanical Property Change During FSW and GTAW of Al6061 Alloy

Abstract

The variation of morphology and mechanical properties of Al6061 automotive aluminum alloy due to friction stir welding (FSW) and gas tungsten arc welding (GTAW) was investigated by optical metallography, scanning electron microscopy, microhardness measurement, X-ray diffraction, tensile testing, and fractography. The center-line dendrite emergence and microhardness reduction in the heat-affected zone were observed in the GTAW process. Although similar microhardness reduction with respect to the base metal was observed in the FSW samples, higher HVs were obtained for the FSW rather than the GTAW process at almost all heat-affected locations. Ultimate tensile strengths of the FSW and the GTAW samples in the transverse direction were ~0.57 and ~0.35 of the base metal, respectively. Post-weld aging improved the strength, but reduced the ductility of the welding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Jariyaboon M, Davenport AJ, Ambat R, Connolly BJ, Williams SW, Price DA: Corrosion Science 2007; 49: 877–909.

    Article  CAS  Google Scholar 

  2. 2.

    Mathers G (2002) The welding of aluminum and its alloys. Woodhead Publishing Ltd and CRC Press LLC; Boca Raton, Washington DC.

    Book  Google Scholar 

  3. 3.

    Lakshminarayanan AK, Balasubramanian V, Elangovan K: Int J Adv Manuf Technol 2009; 40: 286–296.

    Article  Google Scholar 

  4. 4.

    Nikseresht Z, Karimzadeh F, Golozar MA, Heidarbeigy M: Mater. Des., 2010; 31: 2643–2648.

    Article  CAS  Google Scholar 

  5. 5.

    Shakoor A and Zhenggan Z: Journal of Materials Processing Technology 2011; 211: 1736–1741.

    Article  CAS  Google Scholar 

  6. 6.

    Zhao J, Jiang F, Jian H, Wen K, Jiang L, Chen X: Mater. Des., 2010; 31: 306–311.

    Article  Google Scholar 

  7. 7.

    Kumar A and Sundarrajan S: Mater. Des., 2009; 30: 1288–1297.

    Article  CAS  Google Scholar 

  8. 8.

    Mutombo K and Toit MD: Int. J. Fatigue, 2011; 33: 1539–1547.

    Article  CAS  Google Scholar 

  9. 9.

    Heidarzadeh A, Khodaverdizadeh H, Mahmoudi A, and Nazari E: Mater. Des., 2012; 37: 166–173.

    Article  CAS  Google Scholar 

  10. 10.

    Mishra RS and Ma ZY: Mater. Sci. Eng. R 2005; 50 1–78.

    Article  Google Scholar 

  11. 11.

    Gallais C, Denquin A, Bréchet Y, and Lapasset G: Mater. Sci. Eng. A 2008; 496 77–89.

    Article  Google Scholar 

  12. 12.

    Munoz AC, Ruckert G, Huneau B, Sauvage X, and Marya S: J. Mater. Process. Technol., 2008; 197: 337-343.

    Article  CAS  Google Scholar 

  13. 13.

    Simar A, Brechet Y, de Meester B, Denquin A, Gallais C, and Pardoen T: Prog. Mater. Sci., 2012; 57: 95–183.

    Article  CAS  Google Scholar 

  14. 14.

    Fahimpour V, Sadrnezhaad SK, and Karimzadeh F: Mater. Des., 2012; 39: 329-333.

    Article  CAS  Google Scholar 

  15. 15.

    ASM Handbook (2005) Properties and Selection: Irons, Steels, and High Performance Alloys, Section: carbon and low alloy steels, Vol. 1. ASM International, Materials Park, OH.

    Google Scholar 

  16. 16.

    ASM Handbook (1998). Heat Treating Section: Introduction to Heat Treating of Tool Steels, Vol. 4. ASM International, Materials Park, OH.

    Google Scholar 

  17. 17.

    ASM Handbook (1998) Heat treating Section: heat treating of aluminum alloys, Vol. 4. ASM International, Materials Park, OH.

    Google Scholar 

  18. 18.

    ASTM Standard E0008M-00b, vol. 03.01: Metals Test Methods and Analytical Procedures, ASTM International, Materials Park, OH, 2005.

  19. 19.

    ASM Handbook: Metallography and Microstructures, vol. 9, ASM International, Materials Park, OH, 2004.

  20. 20.

    Norman AF, Drazhner V, and Prangnell PB: Mater. Sci. Eng. A 1999; 259: 53–64.

    Article  Google Scholar 

  21. 21.

    Li Y, Murr LE, and McClure JC: Mater. Sci. Eng. A 1999; 271: 213-223.

    Article  Google Scholar 

  22. 22.

    Kumar TS, Balasubramanian V, and Sanavullah MY: Mater. Des., 2007; 28: 2080–2092.

    Article  CAS  Google Scholar 

  23. 23.

    Ozturk F, Sisman A, Toros S, Kilic S, and Picu RC.: Mater. Des., 2010; 31: 972–975.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. S.H. Sonbolestan (MSc student in the Sharif University of Technology) and Mr. M.H. Tahmasebi (PhD candidate in the Isfahan University of Technology) for their help in running the tests and the Sharif University of Technology and Isfahan University of Technology for allowing research work to be conducted in their laboratories.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Sadrnezhaad.

Additional information

Manuscript submitted June 20, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fahimpour, V., Sadrnezhaad, S.K. & Karimzadeh, F. Microstructure and Mechanical Property Change During FSW and GTAW of Al6061 Alloy. Metall Mater Trans A 44, 2187–2195 (2013). https://doi.org/10.1007/s11661-012-1588-4

Download citation

Keywords

  • Welding
  • Base Metal
  • Friction Stir Welding
  • Friction Stir Welding
  • Friction Stir Welding Process