Skip to main content
Log in

Effect of Annealing Temperature on the Thermoelectric Properties of the Bi0.5Sb1.5Te3 Thin Films Prepared by Radio-Frequency Sputtering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of annealing temperature on the crystallinity, thermoelectric properties, and surface morphology of the Bi0.5Sb1.5Te3 thin films prepared on SiO2/Si substrate by radio-frequency (RF) magnetron sputtering was investigated using X-ray diffraction (XRD), the four-point probe method, and scanning electron microscopy (SEM). XRD results show that the crystallite structure of the Bi x Sb2–x Te3 thin films belong to Bi0.5Sb1.5Te3. When the Bi x Sb2–x Te3 thin films were annealed between 423 K and 523 K (150 °C and 250 °C) for 10  minutes, the crystallinity of the thin films continuously increases with the temperature increase. In addition, the (015) reflection plane as the preferred orientation and the oxidation compound of Bi3.73Sb1.5O3 first appeared when the Bi0.5Sb1.5Te3 thin films were annealed at 523 K (250 °C) for 10 minutes. An activation energy of 51.66 kJ/mol for crystallite growth of Bi0.5Sb1.5Te3 thin films annealed between 423 K and 523 K (150 °C and 250 °C) for 10 minutes was obtained. The resistivity was 2.69 × 102 and 5.93 × 10  μΩ·m, respectively, for the as-deposited Bi0.5Sb1.5Te3 thin films and annealed at 523 K (250 °C) for 10 minutes. The maximum values of the Seebeck coefficient and power factor were 256.5 μV/K and 1.12 × 103 μW/m·K2, respectively, for the Bi0.5Sb1.5Te3 thin films annealing treatment at 523 K (250 °C) for 10 minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. ÓQuinn: Nature, 2001, vol. 413, pp. 597–602.

    Article  CAS  Google Scholar 

  2. T.C. Harman, P.J. Taylar, M.P. Walsh, and B.E. Laforge: Science, 2002, vol. 297, pp. 2229–32.

    Article  CAS  Google Scholar 

  3. L.D. Hicks and M.D. Dresselhaus: Phys. Rev. B, 1993, vol. 47, pp. 12727–12731.

    Article  CAS  Google Scholar 

  4. L.D. Hickes, T.C. Harman, and M.S. Dresselhaus: Appl. Phys. Lett., 1993, vol. 63, pp. 3230–32.

    Article  Google Scholar 

  5. T. Gaillat, C.K. Huang, J.P. Fleurial, G.J. Snyder, and A. Borshchevskg: Proceedings of the 19th Internationl Conference on Thermoelectrics, ICT’00, IEEE, Cardiff, UK, 2000, pp. 151–154.

  6. R. Venkatasubramanian and T. Colpitts: Mater. Res. Soc. Symposium Proc., T.M. Tritt, M.G. Manatgidis, H.B. Lyon Jr, and G.D. Mahan, ed., San Francisco, CA, 1997, vol. 478, pp. 73-84.

  7. R. Venkatasubramanian, T. Colpitts, E. Watko, and D. Malta: Proc. 1st Nat. Thermogenic Cooler Workshop, S.B. Hon, ed., Center for Night Vision and Electro-Optics, Fort Belvoir, VA, 1992, pp. 196–231.

  8. A. Shakouri and J.E. Bowers: Appl. Phys. Lett., 1997, vol. 71, pp. 1234–36.

    Article  CAS  Google Scholar 

  9. G.D. Mahan and L.M. Woods: Phys. Rev. Lett., 1998, vol. 80, pp. 4016–19.

    Article  CAS  Google Scholar 

  10. F. Volkein, V. Baier, U. Dillner, and E. Kessler: Thin Solid Films, 1990, vol. 187, pp. 253–62.

    Article  Google Scholar 

  11. A. Foucaran, A. Sackda, A. Giani, F. P. Delannoy, and A. Boyer: Mater. Sci. Eng. B, 1998, vol. 52, pp. 154–61.

    Article  Google Scholar 

  12. A. Dauscher, A. Thomy, and H. Scherrer: Thin Solid Films, 1996, vol. 280, pp. 61–66.

    Article  CAS  Google Scholar 

  13. R.S. Makala, K. Jagannadham, and B.C. Cho: J. Appl. Phys., 2003, vol. 94, pp. 3907–18.

    Article  CAS  Google Scholar 

  14. R. Venkatasubramanian, T. Colpitts, B. ÓQuinn, S. Liu, N. El-Masry, and M. Lamvik: Appl. Phys. Lett., 1999, vol. 75, pp. 1104–06.

    Article  CAS  Google Scholar 

  15. R. Venkatasubramanian: U.S. Patent No. 6,071,351, June 6, 2000.

  16. S. Cho, Y. Kim, A. Divenere, G.K. Wong, J.B. Ketterson, and J.R. Meyer: Appl. Phys. Lett., 1999, vol. 75, pp. 1401–03.

    Article  CAS  Google Scholar 

  17. H. Horo, K. Sato, and H. Kagechika: J. Appl. Phys., 1993, vol. 73, pp. 1252–60.

    Article  Google Scholar 

  18. K.H. Kim, E. Byon, G.H. Lee, and S. Cho: Thin Solid Films, 2006, vol. 510, pp. 148–53.

    Article  CAS  Google Scholar 

  19. A. Giani, A. Boulouz, B. Aboulfarah, F. Pascal-Delannoy, A. Foucaran, A. Boyer, and A. Mzerd: J. Cryst. Growth, 1999, vol. 204, pp. 91–96.

    Article  CAS  Google Scholar 

  20. D.M. Rowe: Thermoelectric Handbook: Micro to Nano, D.M. Rowe, ed., CRC Press, Taylor & Francis Group, FL, 2006, pp. 1–26.

  21. J. Nurnus, H. Bottner, and A. Lambrecht: Proceedings of the 22nd International Conference on Thermoelectrics, ICT’03, IEEE, LaGrande Motte, France, 2003, pp. 655–60.

  22. B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 1978, p. 87.

  23. T.R. Malow and C.C. Koch: Acta Mater., 1997, vol. 45, pp. 2177–86.

    Article  CAS  Google Scholar 

  24. A. Giani, A. Foucaran, A. Sakda, F. Pascal-Delannoy, G. Belleville, and A. Boyer: 1997, vol. 29, pp. 177–82.

  25. F. Mongellaz, A. Fillot, B. Griot, and J. De Lalĺce: Proc. SPIE 2227, Conf. on Cryogenic Optical Systems and Instruments VI, Orlando, FL, 1994, vol. 22, pp. 156–65.

  26. N. Scoville, C. Baigar, J. Rolfe, J.-P. Fleurial, and J. Vandersande: Nano Structured Mater., 1995, vol. 5, pp. 207–23.

    Article  CAS  Google Scholar 

  27. D.H. Kim and G.H. Lee: Mater. Sci. Eng. B, 2006, vol. 131, pp. 106–10.

    Article  CAS  Google Scholar 

  28. W.D. Kingery: Introduction to Ceramics, John Wiley and Sons, Inc., New York, NY, 1996, p. 363.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo-Chin Wang.

Additional information

Manuscript submitted May 24, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HJ., Kang, KJ., Hwang, JD. et al. Effect of Annealing Temperature on the Thermoelectric Properties of the Bi0.5Sb1.5Te3 Thin Films Prepared by Radio-Frequency Sputtering. Metall Mater Trans A 44, 2339–2345 (2013). https://doi.org/10.1007/s11661-012-1587-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1587-5

Keywords

Navigation