Skip to main content
Log in

Enhanced Mechanical Properties of a Hot-Stamped Advanced High-Strength Steel via Tempering Treatment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot stamping process has an extensive range of applications due to its advantages over the traditionally used stamping techniques developed in the past. To enhance the mechanical properties of the indirectly hot-stamped parts, the quenching and partitioning (Q&P) process has been recently applied on boron-alloyed steel. In the current research, it was observed that the tempering treatment on the directly hot-stamped boron steel resulted in better mechanical properties and higher formability index compared with the reported results using the Q&P process. The nano-carbide formation and the dislocation annihilation during the tempering treatment were suggested as the evident reasons for the occurrence of the mentioned robust properties. The ease of the practical implementation of the tempering route together with the markedly enhanced mechanical properties of the tempered parts make the suggested method privileged. Additionally, the variations in the yield strength before and after tempering were quantitatively evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Naderi, A. Saeed-Akbari, and W. Bleck: J. Mater. Sci. Eng. A, 2008, vol. 487, pp. 445–55.

    Article  Google Scholar 

  2. H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103–18.

    Article  CAS  Google Scholar 

  3. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1988.

  4. M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: J. Mater. Process. Technol., 2011, vol. 211, pp. 1117–25.

    Article  CAS  Google Scholar 

  5. M. Abbasi, M. Naderi, and A. Saeed-Akbari: Mater. Des., 2013, vol. 45, pp. 1–5.

    Article  CAS  Google Scholar 

  6. H. Liu, X. Jin, H. Dong, and J. Shi: Mater. Charact., 2011, vol. 49, pp. 223–27.

    Article  Google Scholar 

  7. J. Min, J. Lin, J. Li, and W. Bao: Comput. Mater. Sci., 2010, vol. 49, pp. 326–32.

    Article  CAS  Google Scholar 

  8. http://www.keytometals.com: Boron in steel.

  9. M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: Steel Res. Int., 2010, vol. 81, pp. 216–23.

    Article  CAS  Google Scholar 

  10. K. Mori and D. Ito: CIRP Ann., 2009, vol. 58, pp. 267–70.

    Article  Google Scholar 

  11. G. Schießl, T. Possehn, T. Heller, and S. Sikora: IDDRG International Deep Drawing Group 2004 Conference Sindelfingen, Germany, 2004, pp. 158–66.

  12. M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: J. Mater. Sci. Technol., 2011, vol. 27, pp. 369–76.

    Article  CAS  Google Scholar 

  13. M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: Procedia Eng., 2011, vol. 10, pp. 460–65.

    Article  CAS  Google Scholar 

  14. H.L. Yi, S. Ghosh, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4870–74.

    Article  Google Scholar 

  15. H. Liu, X. Lu, X. Jin, H. Dong, and J. Shi: Scripta Mater., 2011, vol. 64, pp. 749–52.

    Article  CAS  Google Scholar 

  16. M. Naderi: Doctoral Thesis, RWTH Aachen University, Germany, 2007.

  17. B. Schulz: Aust. Manuf. Technol., 2007, pp. 42–47.

  18. DIN 50114, Zugversuch an dünnen Blechen.

  19. DIN ISO 2768 Allgemeintoleranzen.

  20. W. Bleck: Materials Science of Steel, Textbook for RWTH students, Verlag Mainz, Aachen, 2007.

  21. A.C. Bannister and S.J. Trail: Structural Integrity Assessment Procedures for European Industry. British steel plc., 1996.

  22. R.L. Brockenbrough & Associates, Inc, Effect of Yield-Tensile Ratio on Structural Behaviour-High Performance Steels for Bridge Construction, ONR-AISI Agreement No. N00014-94-2-0002, 1995.

  23. I.V. Gorynin, V.V. Rybin, V.A. Malyshevskii, T.G. Semicheva, and L.G. Sherokhina: Met. Sci. Heat Treat., 1999, vol. 41, pp. 377–83.

    Article  CAS  Google Scholar 

  24. B. Hoffmann, O. Vöhringer, and E. Macherauch: J. Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 707–10.

    Article  Google Scholar 

  25. L. Balogh, R.B. Figueiredo, T. Ungár, and T.G. Langdon: J. Mater. Sci. Eng. A, 2010, vol. 528, pp. 533–38.

    Article  Google Scholar 

  26. G. Krauss: Heat Treatment and Processing Principles, American Society for Metals, 1990.

  27. D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, 2nd Ed., Nelson Thornes Ltd., Cheltenham, 1992.

  28. D. Holec and A. Dlouhy: Mater. Sci. Forum, 2005, vol.482, pp. 159–62.

    Article  Google Scholar 

  29. J. Pešička, R. Kužel, A. Dronhofer, and G. Eggerler: Acta Mater., 2003, vol. 51, pp. 4847–62.

    Article  Google Scholar 

  30. Y. Weng, H. Dong, and Y. Gan: Advanced Steels, Springer, 2011.

  31. A.K. Sinha: Physical Metallurgy Handbook, McGraw-Hill, New York, 2003.

  32. ImageJ 1.42q Software, National Institutes of Health, USA.

  33. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, Boston, 1991.

  34. Heat Treater’s Guide: Practice and Procedures for Irons and Steels, ASM international, 1995.

  35. E.V. Kozlov, N.A. Popova, S.I. Klimashin, V.E. Gromov, and N.A. Koneva: Russ. Phys. J., 2006, vol. 49, pp. 47–54.

    Article  CAS  Google Scholar 

  36. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao: Scripta Mater., 2010, vol. 63, pp. 815–18.

    Article  CAS  Google Scholar 

  37. G. Gottstein: Physical Foundations of Materials Science, Springer, Germany, 2004.

    Book  Google Scholar 

  38. M. Säglitz, D.K. Matlock, and G. Krauss: International Conference on New Development in Advanced High-Strength Sheet Steels, Orlando, June 15–18, 2008, pp. 147–54.

  39. S. Vandeputte, D. Vanderschhuern, S. Claessens, and L.T. Martinez: 9th International Conference on Steel Sheet Metal, Leuven, Belgium, 2001, pp. 405–14.

  40. M. Abbasi, A. Saeed Akbari, and M. Naderi: Mater. Sci. Eng. A, 2012, vol. 538, pp. 356–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abbasi.

Additional information

Manuscript submitted June 18, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naderi, M., Abbasi, M. & Saeed-Akbari, A. Enhanced Mechanical Properties of a Hot-Stamped Advanced High-Strength Steel via Tempering Treatment. Metall Mater Trans A 44, 1852–1861 (2013). https://doi.org/10.1007/s11661-012-1546-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1546-1

Keywords

Navigation