Skip to main content
Log in

Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article presents a detailed assessment of microwave (MW) heating, isothermal sintering, and the resulting tensile properties of commercially pure Ti (CP-Ti), Ti-6Al-4V, and Ti-10V-2Fe-3Al (wt pct), by comparison with those fabricated by conventional vacuum sintering. The potential of MW sintering for titanium fabrication is evaluated accordingly. Pure MW radiation is capable of heating titanium powder to ≥1573 K (1300 °C), but the heating response is erratic and difficult to reproduce. In contrast, the use of SiC MW susceptors ensures rapid, consistent, and controllable MW heating of titanium powder. MW sintering can consolidate CP-Ti and Ti alloys compacted from −100 mesh hydride-dehydride (HDH) Ti powder to ~95.0 pct theoretical density (TD) at 1573 K (1300 °C), but no accelerated isothermal sintering has been observed over conventional practice. Significant interstitial contamination occurred from the Al2O3-SiC insulation–susceptor package, despite the high vacuum used (≤4.0 × 10−3 Pa). This leads to erratic mechanical properties including poor tensile ductility. The use of Ti sponge as impurity (O, N, C, and Si) absorbers can effectively eliminate this problem and ensure good-to-excellent tensile properties for MW-sintered CP-Ti, Ti-10V-2Fe-3Al, and Ti-6Al-4V. The mechanisms behind various observations are discussed. The prime benefit of MW sintering of Ti powder is rapid heating. MW sintering of Ti powder is suitable for the fabrication of small titanium parts or titanium preforms for subsequent thermomechanical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Siores, and D. Do Rego: J. Mater. Proc. Technol., 1995, vol. 48, pp. 619-25.

    Article  Google Scholar 

  2. D.E. Clark, and W.H. Sutton: Annu. Rev. Mater. Sci., 1996, vol. 26, pp. 299-331.

    Article  CAS  Google Scholar 

  3. Yu.V. Bykov, K.I. Rybakov, and V.E. Semenov: J. Phys. D: Appl. Phys., 2001, vol. 34, pp. 55-75.

    Article  Google Scholar 

  4. D. Agrawal: Trans. Indian Ceram. Soc., 2006, vol. 65, pp. 129-44.

    CAS  Google Scholar 

  5. R. Roy, D. Agrawal, J.P. Cheng, and S. Gedevanishvili: Nature, 1999, vol. 399, pp. 668-70.

    Article  CAS  Google Scholar 

  6. M. Gupta, and W.W. Leong: Microwaves and Metals, Wiley (Asia), Singapore, 2007.

    Book  Google Scholar 

  7. N. Yoshikawa: J. Micorwave Power EE, 2010, vol. 44, pp. 4-13.

    Google Scholar 

  8. A. Mondal: Microwave Sintering of Metals, LAP Lambert Academic Publishing, Saarbrücken, 2011.

    Google Scholar 

  9. G. Sethi, A. Upadhaya, and D. Agrawal: Sci. Sinter., 2003, vol. 35, pp. 49-65.

    Article  CAS  Google Scholar 

  10. P. Mishra, G. Sethi, and A. Upadhyaya: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 839-45.

    Article  CAS  Google Scholar 

  11. M. Jain, G. Skandan, K. Martin, K. Cho, B. Klotz, R. Dowding, D. Kapoor, D. Agrawal, and J. Cheng: Int. J. Powder Metall., 2006, vol. 42, pp. 45-50.

    CAS  Google Scholar 

  12. V.D. Buchelnikov, D.V. Louzguine-Luzgin, G. Xie, S. Li, N. Yoshikawa, M. Sato, A.P. Anzulevich, I.V. Bychkov, and A. Inoue: J. Appl. Phys., 2008, vol. 104, p. 113505.

    Article  Google Scholar 

  13. A. Mondal, D. Agrawal, and A. Upadhyaya: J. Microwave Power EE, 2010, vol. 44, pp. 28-44.

    Google Scholar 

  14. M. Tanaka, H. Kona, and K. Maruyama: Phys. Rev. B, 2009, vol. 79, pp. 104420.

    Article  Google Scholar 

  15. M.F. Ashby, and D.R.H. Jones: Engineering Materials 1: An Introduction to their Properties, Applications and Design, 4th ed., Butterworth-Heinemann, Oxford, 2011, pp. 58.

    Google Scholar 

  16. M.A. Imam, F.H. Froes, and K.L. Housley: in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, New York, 2010, pp. 1-41.

    Google Scholar 

  17. F.H. Froes, and D. Eylon: Int. Mater. Rev., 1990, vol. 35, pp. 162-68.

    Article  CAS  Google Scholar 

  18. M. Qian: Int. J. Powder Metall., 2010, vol. 46, pp. 29-44.

    Google Scholar 

  19. M. Sato, H. Fukusima, F. Ozeki, T. Hayasi, Y. Satito, and S. Takayama: 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics, Karlsruhe, 2004, pp. 831–32.

  20. A. Cottrell: An Introduction to Metallurgy, 2nd ed., IOM, London, 1975, p. 495.

    Google Scholar 

  21. M.G. Kutty, S. Bhaduri, and S.B. Bhaduri, 2004. J. Mater. Sci., vol. 15, pp. 145-50.

    Article  CAS  Google Scholar 

  22. T. Hayashi: Reports of Research Institute of Industrial Products Technology, Research Institute Industrial Products Technology, Gifu, 2005.

    Google Scholar 

  23. T. Marcelo, J. Mascarenhas, and F.A.C. Oliveira: Mater. Sci. Forum, 2010, vol. 636-637, pp. 946-51.

    Article  Google Scholar 

  24. R.W. Bruce, A.W. Fliflet, H.E. Huey, C. Stephenson, and M.A. Imam: Key Eng. Mater., 2010, vol. 436, pp. 131-40.

    Article  CAS  Google Scholar 

  25. S.D. Luo, M. Yan, G.B. Schaffer, and M. Qian: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2466-74.

    Article  Google Scholar 

  26. I.M. Robertson, and G.B. Schaffer: Powder Metall., 2009, vol. 52, pp. 225-32.

    Article  CAS  Google Scholar 

  27. S.D. Hill, and R.V. Mrazek: Metall. Trans., 1974, vol. 5A, pp. 53-58.

    Google Scholar 

  28. D.F. Heaney and R.M. German: in Proceedings of the PM 2004 Powder Metallurgy World Congress, H. Danninger and R. Ratzi, eds., European Powder Metallurgy Association, Shrewsbury, 2004, pp. 222–27.

  29. Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6719-26.

    Article  CAS  Google Scholar 

  30. T. Saito: Adv. Perform. Mater., 1995, vol. 2, pp. 121-44.

    Article  CAS  Google Scholar 

  31. Y. Yamamoto, J.O. Kiggans, M.B. Clark, S.D. Nunn, A.S. Sabau, and W.H. Peter: Key Eng. Mater., 2010, vol. 436, pp. 103-11.

    Article  CAS  Google Scholar 

  32. S. Abkowitz, J.M. Siergiej, and R.D. Regan: in Modern Developments in Powder Metallurgy, H.H. Hausner, ed., Metal Powder Industries Federation, Princeton, 1971, pp. 501–11.

  33. A.D. Hanson, J.C. Runkle, R. Widmer, and J.C. Hebeisen: Int. J. Powder Metall., 1990, vol. 26, pp. 157-64.

    CAS  Google Scholar 

  34. F.H. Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen, and V.A. Duz: JOM, 2004, vol. 56, pp. 46-48.

    Article  CAS  Google Scholar 

  35. O.M. Ivasishin, D.G. Savvakin, I.S. Bielov, V.S. Moxson, V.A. Duz, R. Davies, and C. Lavender: in Proceedings of Conference on Science and Technology of Powder Materials: Synthesis, Consolidation and Properties, Pittsburg, MS&T 2005, pp. 151–58.

  36. N.R. Moody, W.M. Garrison, Jr., J.E. Smugeresky, and J.E. Costa: Metall. Trans. A, 1993, vol. 24A, pp. 161-74.

    CAS  Google Scholar 

  37. H. Guo, Z. Zhao, C. Duan, and Z. Yao: JOM, 2008, vol. 60, pp. 47-49.

    Article  CAS  Google Scholar 

  38. G. Leitner, and K. Jaenicke-Rssler: J. Phys. IV, 1993, vol. 3, p. 403.

    CAS  Google Scholar 

  39. J. Ma, J.F. Diehl, E.J. Johnson, K.R. Martin, N.M. Miskovsky, C.T. Smith, G.J. Weisel, B.L. Weiss, and D.T. Zimmerman: J. Appl. Phys., 2007, vol. 101, pp. 074906.

    Article  Google Scholar 

  40. Y.N. Podrezov, V.A. Nazarenko, A.V. Vdovichenko, V.I. Danilenko, O.S. Koryak, and Y.I. Evich: Powder Metall. Metal Ceram., 2009, vol. 48, pp. 201-10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Australian Research Council (ARC) through the Centre of Excellence for Design in Light Metals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qian.

Additional information

Manuscript submitted March 1, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S.D., Guan, C.L., Yang, Y.F. et al. Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys. Metall Mater Trans A 44, 1842–1851 (2013). https://doi.org/10.1007/s11661-012-1529-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1529-2

Keywords

Navigation