Skip to main content
Log in

Investigation of Interfaces by Atom Probe Tomography

  • Symposium: Solid-State Interfaces II: Toward an Atomistic-Scale Understanding of Structure, Properties, and Behavior through Theory and Experiment
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We investigated the thermodynamic and transport properties of buried interfaces with atom probe tomography. Owing to the 3D subnanometer resolution and single atom sensitivity of the method, it is possible to obtain composition profiles with high accuracy both along or normal to the interfaces. We have shown that the width of the chemical interface between the Fe and Cr system follows the Cahn–Hilliard relation with a gradient energy coefficient of 1.86 × 10−22 J nm2. Sharpening of the Ni/Cu interface as a result of kinetic control was directly observed. We investigated the grain boundary and triple junction transport in Fe/Cr and Ni/Cu. Cr segregation enthalpy into Fe triple junctions was found to be 0.076 eV, which falls in between the surface (0.159 eV) and grain boundary (0.03 eV) segregation enthalpies. In the investigated 563 K to 643 K (290 °C to 370 °C) range, Ni transport is 200 to 300 times faster in the triple junctions of Cu than in the grain boundaries. The diffusion activation enthalpy in the triple junctions is two-thirds that of the grain boundaries (0.86 and 1.24 eV, respectively). These investigations have shown that triple junctions are defects in their own right with characteristic segregation and diffusion properties: They are preferred segregation sites and can be considered as a diffusion shortcut in the grain boundary network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Meyers, A. Mishra and D.J. Benson, Prog. Mater. Sci., 2006, vol. 51., pp. 427-556.

    Article  CAS  Google Scholar 

  2. J. Schiotz and K.W. Jacobsen, Science, 2003, vol. 301, pp. 1357-59.

    Article  CAS  Google Scholar 

  3. A.F. Mayadas and M. Schatzkes, Phys. Rev. B, 1970, vol 1, pp. 1382-89.

    Article  Google Scholar 

  4. G. Herzer, IEEE Trans. Mag., 1989, vol. 25., pp. 3327-29.

    Article  CAS  Google Scholar 

  5. R. Valiev, Nat. Mater., 2004, vol. 3., pp. 511-16.

    Article  CAS  Google Scholar 

  6. L. Zheng, M.R. Chellali, R. Schlesiger, D. Baither, G. Schmitz (2011) Scripta Mater 65:428-31.

    Article  CAS  Google Scholar 

  7. S. Lozano-Perez, K. Kruska, I. Iyengar, T. Terachi and T. Yamada, Corros. Sci., 2012, vol. 56., pp. 75-85.

    Article  Google Scholar 

  8. S.K. Banerji, C.J. McMahon and H.C. Feng, Metall. Trans. A, 1978, vol. 9A, pp. 237-47.

    CAS  Google Scholar 

  9. E.D. Hondros and D. McLean, Philos. Mag., 1974, vol. 29., 771-796.

    Article  CAS  Google Scholar 

  10. C.E. Krill, H. Ehrhardt and R. Birringer, Z. Metallkd., 2005, vol. 96., 1134-41.

    CAS  Google Scholar 

  11. Z.M. Wang, J.Y. Wang, L.P.H. Jeurgens and E.J. Mittemeijer, Phys. Rev. Lett., 2008, vol. 100., 125503.

    Article  CAS  Google Scholar 

  12. H. Mehrer: Diffusion in solids, Springer Verlag, Berlin Heidelberg (Germany), 2007, pp.549.

    Google Scholar 

  13. G. Palumbo, S.J. Thorpe and K.J. Aust, Scripta Metall. Mater., 1990, vol. 24., pp. 1347-50.

    Article  CAS  Google Scholar 

  14. A. Suzuki and Y. Mishin, J. Mater. Sci., 2005, vol. 40, pp. 3155-61.

    Article  CAS  Google Scholar 

  15. M. Tang, W.C. Carter and R.M. Cannon, Phys. Rev. B, 2006, vol. 73., 024102.

    Article  Google Scholar 

  16. A. Caro and H. van Swygenhoven, Phys. Rev. B, 2001, vol. 63., 134101.

    Article  Google Scholar 

  17. P. Stender, T. Heil, H. Kohl and G. Schmitz, Ultramicroscopy, 2009, vol. 109., pp. 612-618.

    Article  CAS  Google Scholar 

  18. E.W. Müller, Z. Phys., 1951, vol. 131., pp. 136-142.

    Article  Google Scholar 

  19. T.T. Tsong, Surf. Sci., 1978, vol. 70., pp. 211-33.

    Article  CAS  Google Scholar 

  20. M.K. Miller, A. Cerezo, M.G. Hetherington and G.D.W. Smith: Atom Probe Field Ion Microscopy, Clarendon Press, Oxford (UK), 1996.

    Google Scholar 

  21. P. Stender, C. Oberdorfer, M. Artmeier, P. Pelka, F. Spaleck and G. Schmitz, Ultramicroscopy, 2007, vol. 107., pp. 726-33.

    Article  CAS  Google Scholar 

  22. P. Stender, Z. Balogh, G. Schmitz (2011) Phys. Rev. B 83:121407.

    Article  Google Scholar 

  23. M. Gruber, F. Vurpillot, A. Bostel and B. Deconihout, Surf. Sci., 2011, vol. 605., pp. 2025-31.

    Article  CAS  Google Scholar 

  24. C. Oberdorfer and G. Schmitz, Miscrosc. Microanal., 2011, vol. 17., pp. 15-25.

    Article  CAS  Google Scholar 

  25. O. Moutanabbir, D. Isheim, D.N. Seidman, Y. Kawamura and K.M. Itoh, Appl. Phys. Lett., 2011, vol. 98., 013111.

    Article  Google Scholar 

  26. S. Koellig, M. Gilbert, S. Goossens, A. Hikavyy, O. Richard and W. Vandervost, Appl. Phys. Lett., 2009, vol. 95., 144106.

    Article  Google Scholar 

  27. F. de Geuser, W. Lefebvre, F. Danoix, F. Vurpillot, B. Forbord and D. Blavette, Surf. Interf. Anal., 2007, vol. 39., pp. 268-72.

    Article  Google Scholar 

  28. B. Gault, D. Haley, F. de Geuser, M.P. Moody, E.A. Marquis, D.J. Larson and B.P. Geiser, Ultramicroscopy, 2011, vol. 111, pp. 448-57.

    Article  CAS  Google Scholar 

  29. E.A. Marquis, B.P. Geiser, T.J. Prosa and D.J. Larson, J. Microsc., 2011, vol. 241, pp. 225-33.

    Article  CAS  Google Scholar 

  30. M.R. Chellali, Z. Balogh, H. Bouchikhaoui, R. Schlesiger, P. Stender, L. Zheng and G. Schmitz, Nano Lett., 2012, vol. 12., pp. 3448-54.

    Article  CAS  Google Scholar 

  31. K. Hiepko, J. Bastek, R. Schlesiger, G. Schmitz, R. Würz and N.A. Stolwijk, Appl. Phys. Lett., 2011, vol. 99., 234101.

    Article  Google Scholar 

  32. T.B. Massalski, H. Okamoto (1990) Binary Phase Diagrams. ASM International, Materials Park.

    Google Scholar 

  33. H. Mehrer (1990) Diffusion in Solids Metals and Alloys Landolt-Börnstein New Series, vol. III. Springer, Berlin.

    Book  Google Scholar 

  34. J.W. Cahn and J.E. Hilliard, J. Phys. Chem., 1958, vol. 28., pp. 258-267.

    Article  CAS  Google Scholar 

  35. G. Schmitz, C. Ene, H. Galinski, R. Schlesiger and P. Stender, JOM, 2010, vol. 62., pp. 58-63.

    Article  Google Scholar 

  36. Y.S. Ng and T.T. Tsong, Surf. Sci., 1978, vol. 78., pp. 419-38.

    Article  CAS  Google Scholar 

  37. Z. Erdélyi, D.L. Beke, P. Nemes and G.A. Langer, Philos. Mag. A, 1999, vol. 79., pp. 1757-68.

    Article  Google Scholar 

  38. J.M. Roussel and P. Bellon, Phys. Rev. B, 2006, vol. 73., 085403.

    Article  Google Scholar 

  39. H. Wan, Y. Shen, X. Jin, Y. Chen and J. Sun, Acta Mater., 2012, vol. 60, pp. 2539-53.

    Article  CAS  Google Scholar 

  40. Z. Balogh, M.R. Chellali, G.H. Greiwe, G. Schmitz and Z. Erdélyi, Appl. Phys. Lett., 2011, vol. 99., 181902.

    Article  Google Scholar 

  41. C.A. Mackliet, Phys. Rev., 1958, vol. 109., pp. 1964-70.

    Article  CAS  Google Scholar 

  42. M.R. Chellali, Z. Balogh, L. Zheng and G. Schmitz, Scripta Mater., 2011, vol. 65, pp.343-46.

    Article  CAS  Google Scholar 

  43. S.V. Divinski, H. Edelhoff and S. Prokofjev, Phys. Rev. B, 2012, vol. 85, 144104.

    Article  Google Scholar 

  44. Z. Erdélyi, Ch. Girardeaux, Zs. Tőkei, D.L. Beke, C. Cserháti and A. Rolland, Surf. Sci, 2002, vol. 496., pp. 129-40.

    Article  Google Scholar 

  45. Z. Erdélyi, G.L. Katona and D.L. Beke, Phys. Rev. B, 2004, vol. 69., 113407.

    Article  Google Scholar 

  46. Z. Erdélyi and D.L. Beke, J. Mater. Sci., 2011, vol. 46., pp. 6465-83.

    Article  Google Scholar 

  47. R. Kube, H. Bracht, J.L. Hansen, A.N. Larsen, E. Haller, S. Paul and W. Lerch, J. Appl. Phys., 2010, vol. 107., 073520.

    Article  Google Scholar 

  48. J.C. Fisher, J. Appl. Phys., 1951, vol. 22., pp. 74-77.

    Article  CAS  Google Scholar 

  49. B. Bokstein, V. Ivanov, O. Oreshine, A. Peteline and S. Peteline, Mat. Sci. Eng. A, 2001, vol. 302., pp. 151-53.

    Article  Google Scholar 

  50. I.M. Mikhailovskii, V.B. Rabukhin and O.A. Velikodnaya, Phys. Status Solidi A, 1991, vol. 125, pp. K65-70.

    Article  Google Scholar 

  51. A. Portavoce, L. Chow and J. Bernardini, Appl. Phys. Lett., 2010, vol. 96., 214102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Balogh.

Additional information

Manuscript submitted August 28, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, Z., Stender, P., Chellali, M.R. et al. Investigation of Interfaces by Atom Probe Tomography. Metall Mater Trans A 44, 4487–4495 (2013). https://doi.org/10.1007/s11661-012-1517-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1517-6

Keywords

Navigation