Understanding the Shape-Memory Behavior in Ti-(~49 At. Pct) Ni Alloy by Nanoindentation Measurement

Abstract

The influence of aging treatment on the work-hardening behavior of near-equiatomic NiTi alloy has been studied at the microstructural scale by conducting the instrumented indentation measurement. The maximum shape recovery is achieved at the peak aged condition. The improvement in shape recovery has been attributed to the delayed onset of plasticity. A comparison has been made between the recoverable strain obtained from the tensile experiments and the recovery index parameter determined from the nanoindentation measurements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    H.C. Lin and S.K. Wu: Scripta Metall. Mater., 1992, vol. 26, pp. 59–62.

    Article  CAS  Google Scholar 

  2. 2.

    Y. Liu and S.P. Calvin: Acta Mater., 1997, vol. 45, pp. 4431–39.

    Article  CAS  Google Scholar 

  3. 3.

    D. Chrobak and D. Stroz: Scripta Mater., 2005, vol. 52, pp. 757–60.

    Article  CAS  Google Scholar 

  4. 4.

    G.A. Shaw, D.S. Stone, A.D. Johnson, A.B. Ellis, and W.C. Crone: Appl. Phys. Lett., 2003, vol. 83, pp. 257–59.

    Article  CAS  Google Scholar 

  5. 5.

    A.J. Muir Wood, S. Sanjabi, Y.Q. Fu, Z.H. Barber, and T.W. Clyne: Surf. Coat. Tech., 2008, vol. 202, pp. 3115–20.

  6. 6.

    X.-G. Ma and K. Komvopoulos: Appl. Phys. Lett., 2003, vol. 83, pp. 3773–75.

    Article  CAS  Google Scholar 

  7. 7.

    A.J. Muir Wood and T.W. Clyne: Acta Mater., 2006, vol. 54, pp. 5607–15.

  8. 8.

    S. Sanjabi and Z.H. Barber: Surf. Coat. Tech., 2010, vol. 204, pp. 1299–1304.

    Article  CAS  Google Scholar 

  9. 9.

    K. Otsuka and C.M. Wayman: Shape Memory Materials, 1st ed., Cambridge University Press, Cambridge, U.K., 1998, p. 27.

  10. 10.

    X. Li and B. Bhushan: Mater. Charact., 2002, vol. 48, pp. 11–36.

    Article  CAS  Google Scholar 

  11. 11.

    N.K. Mukhopadhyay and P. Paufler: Int. Mater. Rev., 2006, vol. 51, pp. 209–45.

    Article  CAS  Google Scholar 

  12. 12.

    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.

    Article  CAS  Google Scholar 

  13. 13.

    W.C. Oliver and G.M. Pharr: J. Mater. Res., 2004, vol. 19, pp. 3–20.

    Article  CAS  Google Scholar 

  14. 14.

    M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Acta Mater., 2001, vol. 49, pp. 3899–3918.

  15. 15.

    N. Chollacoop, M. Dao, and S. Suresh: Acta Mater., 2003, vol. 51, pp. 3713–29.

    Article  CAS  Google Scholar 

  16. 16.

    J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Acta Mater., 2003, vol. 51, pp. 1663–78.

    Article  Google Scholar 

  17. 17.

    D. Ma, C.W. Ong, J. Lu, and J. He: J. Appl. Phys., 2003, vol. 94, pp. 288–94.

    Article  CAS  Google Scholar 

  18. 18.

    S. Kucharski and Z. Mro′z: Mater. Sci. Eng. A, 2001, vol. 318, pp. 65–76.

    Article  Google Scholar 

  19. 19.

    B. Storåkers and P.-L. Larsson: J. Mech. Phys. Solid., 1994, vol. 42, pp. 307–32.

    Article  Google Scholar 

  20. 20.

    B.N. Lucas and W.C. Oliver: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 601–10.

    Article  CAS  Google Scholar 

  21. 21.

    M.L. Oyen and R.F. Cook: J. Mater. Res., 2003, vol. 18, pp. 139–50.

    Article  CAS  Google Scholar 

  22. 22.

    H. Takagi, M. Dao, M. Fujiwara, and M. Otsuka: Philos. Mag., 2003, vol. 83, pp. 3959–76.

    Article  CAS  Google Scholar 

  23. 23.

    A.C. Fischer-Cripps: Mater. Sci. Eng. A, 2004, vol. 385, pp. 74–82.

    Article  Google Scholar 

  24. 24.

    Y.T. Cheng and C.-M. Cheng: Appl. Phys. Lett., 1998, vol. 73, pp. 614–16.

    Article  CAS  Google Scholar 

  25. 25.

    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: J. Am. Ceram. Soc., 1981, vol.64, pp. 533–38.

    Article  CAS  Google Scholar 

  26. 26.

    M.T. Laugier: J. Mater. Sci. Lett., 1987, vol. 6, pp. 897-900.

    Article  CAS  Google Scholar 

  27. 27.

    R. Dukino and M.V. Swain: J. Am. Ceram. Soc., 1992, vol. 75, pp. 3299–3304.

    Article  CAS  Google Scholar 

  28. 28.

    R. Liu, D.Y. Li, Y.S. Xie, R. Llewellyn, and H.M. Hawthorne: Scripta Mater., 1999, vol.41, pp. 691–96.

    Article  CAS  Google Scholar 

  29. 29.

    M. Arciniegas, Y. Giallard, J. Pena, J.M. Manero, and F.J. Gil: Intermetallics, 2009, vol. 17, pp. 784–91.

    Article  CAS  Google Scholar 

  30. 30.

    W. Ni, Y.T. Cheng, and D.S. Grummon: Surf. Coat. Tech., 2004, vols. 177–178, pp. 512–17.

  31. 31.

    G.A. Shaw, J.S. Trethewey, A.D. Johnson, W.J. Drugan, and W.C. Crone: Adv. Mater., 2005, vol. 17, pp. 1123–27.

    Article  CAS  Google Scholar 

  32. 32.

    C.P. Frick, T.W. Lang, K. Spark, and K. Gall: Acta Mater., 2006, vol. 54, pp. 2223–34.

    Article  CAS  Google Scholar 

  33. 33.

    L. Qian, S. Zhang, D. Li, and Z. Zhou: J. Mater. Res., 2009, vol. 24, pp. 1082–86.

    Article  CAS  Google Scholar 

  34. 34.

    S. Rajagopalan, A.L. Little, M.A.M. Bourke, and R. Vaidyanathan: Appl. Phys. Lett., 2005, vol. 86, pp. 081901–03.

    Article  Google Scholar 

  35. 35.

    W.M. Huang, J.F. Su, M.H. Hong, and B. Yang: Scripta Mater., 2005, vol. 53, pp. 1055–57.

    Article  CAS  Google Scholar 

  36. 36.

    D. Tabor: The Hardness of Metals, Clarendon Press, Oxford, U.K., 1951.

  37. 37.

    NACE International: NACE Standard TM0177-2005 Item No. 21212, Houston, TX, 1997.

  38. 38.

    H.F. Lopez, A. Salinas, and H. Calderon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 717–29.

    CAS  Google Scholar 

  39. 39.

    Z. Xie, Y. Liu, and J.V. Humbeeck: Acta Mater., 1998, vol. 46, pp. 1989–2000.

    Article  CAS  Google Scholar 

  40. 40.

    B. Yang, L. Riester, and T.G. Nieh: Scripta Mater., 2006, vol. 54, pp. 1277–80.

    Article  CAS  Google Scholar 

  41. 41.

    H. Gao and Y. Huang: Scripta Mater., 2003, vol. 48, pp. 113–18.

    Article  CAS  Google Scholar 

  42. 42.

    A. Bolshakov and G.M. Pharr: J. Mater. Res., 1998, vol. 13, pp. 1049–58.

    Article  CAS  Google Scholar 

  43. 43.

    J.Y. Kim, S.K. Kang, J.R. Greer, and D. Kwon: Acta Mater., 2008, vol. 56, pp. 3338–43.

    Article  CAS  Google Scholar 

  44. 44.

    A.A. Elmustafa: Model. Simul. Mater. Sci. Eng., 2007, vol. 15, pp. 823–965.

    Article  Google Scholar 

  45. 45.

    W. Ni, Y.-T. Cheng, and D.S. Grummon: Surf. Coat. Technol., 2004, vols. 177–178, pp. 512–17.

    Article  Google Scholar 

Download references

Acknowledgments

Author A. Sinha is grateful to Council of Scientific and Industrial Research (CSIR), Govt. of India, for providing financial support through Senior Research Fellowship (CSIR Award No. 08/3(0057)/2008-EMR-I). The authors gratefully acknowledge the support from Special Metals Corporation Ltd., New Hartford, NY, for providing the NiTi bar to carry out the research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Sinha.

Additional information

Manuscript submitted January 29, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinha, A., Datta, S., Chakraborti, P.C. et al. Understanding the Shape-Memory Behavior in Ti-(~49 At. Pct) Ni Alloy by Nanoindentation Measurement. Metall Mater Trans A 44, 1722–1729 (2013). https://doi.org/10.1007/s11661-012-1516-7

Download citation

Keywords

  • Martensite
  • Shape Recovery
  • NiTi Alloy
  • Martensite Variant
  • Recoverable Strain