Advertisement

Metallurgical and Materials Transactions A

, Volume 44, Issue 3, pp 1587–1598 | Cite as

Texture Evolution of Nanostructured Aluminum/Copper Composite Produced by the Accumulative Roll Bonding and Folding Process

  • Mohammad Reza Toroghinejad
  • Roohollah Jamaati
  • Majid Hoseini
  • Jerzy A. Szpunar
  • Jan Dutkiewicz
Article

Abstract

In this study, the accumulative roll bonding and folding (ARBF) process was used for manufacturing nanostructured aluminum/copper multilayered composites. Textural evolution during the ARBF process of composites was evaluated using X-ray diffraction. Microstructural observation of some samples was evaluated by scanning electron microscopy and transmission electron microscopy. The ARBF process induced formation of a strong preferred orientation along the β-fiber and also to the pronounced copper texture component. In the aluminum side, occurrence of dynamic recovery reduced the intensity of the β-fiber rolling texture due to change in dislocation structure and decrease in the degree of strain hardening. On the other hand, occurrence of discontinuous dynamic recrystallization at the third and fourth ARBF cycles led to decreasing the intensity of fibers and texture components in the copper side. The average grain sizes of the final sample for the copper and aluminum sides were ~50 and ~200 nm, respectively.

Keywords

Texture Component Orientation Distribution Function Accumulative Roll Bonding Rolling Texture Cube Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Yang, P. Cizek, P. Hodgson, and C. Wen: Scripta Mater., 2010, vol. 62, pp. 321–24.CrossRefGoogle Scholar
  2. 2.
    J. McKeown, A. Misra, H. Kung, R.G. Hoagland, and M. Nastasi: Scripta Mater., 2002, vol. 46, pp. 593–98.CrossRefGoogle Scholar
  3. 3.
    A.K. Srivastava, K. Yu-Zhang, L. Kilian, J.M. Frigerio, and J. Rivory: J. Mater. Sci., 2007, vol. 42, pp. 185–90.CrossRefGoogle Scholar
  4. 4.
    M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, and K. Janghorban: Compos. Sci. Technol., 2008, vol. 68, pp. 2003–09.CrossRefGoogle Scholar
  5. 5.
    K.X. Wei, W. Wei, Q.B. Du, and J. Hu: Mater. Sci. Eng. A, 2009, vol. 525, pp. 55–59.CrossRefGoogle Scholar
  6. 6.
    K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3073–78.CrossRefGoogle Scholar
  7. 7.
    G. Min, J.M. Lee, S.B. Kang, and H.W. Kim: Mater. Lett., 2006, vol. 60, pp. 3255–59.CrossRefGoogle Scholar
  8. 8.
    S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, and K. Hono: Acta Mater., 2007, vol. 55, pp. 2885–95.CrossRefGoogle Scholar
  9. 9.
    P.H. Shingu, K.N. Ishihara, A. Otsuki, and I. Daigo: Mater. Sci. Eng. A, 2001, vols. 304–306, pp. 399–402.Google Scholar
  10. 10.
    K. Yasuna, M. Terauchi, A. Otsuki, K.N. Ishihara, and P.H. Shingu: Mater. Sci. Eng. A, 2000, vol. 85, pp. 412–17.Google Scholar
  11. 11.
    J.G. Luo and V. Acoff: Mater. Sci. Eng. A, 2004, vol. 379, pp. 164.CrossRefGoogle Scholar
  12. 12.
    J.G. Luo and V. Acoff: Mater. Sci. Eng. A, 2006, vol. 433, pp. 334.CrossRefGoogle Scholar
  13. 13.
    G.P. Dinda, H. Rosner, and G. Wilde: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 328–31.Google Scholar
  14. 14.
    G.P. Dinda, H. Rosner, and G. Wilde: Scripta Mater., 2005, vol. 52, pp. 577–82.CrossRefGoogle Scholar
  15. 15.
    R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, and J.A. Szpunar: Mater. Des., 2012, vol. 35, pp. 37–42.CrossRefGoogle Scholar
  16. 16.
    R. Jamaati and M.R. Toroghinejad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7430–35.CrossRefGoogle Scholar
  17. 17.
    R. Jamaati and M.R. Toroghinejad: Mater. Des., 2010, vol. 31, pp. 4816–22.CrossRefGoogle Scholar
  18. 18.
    R. Jamaati and M.R. Toroghinejad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4146–51.CrossRefGoogle Scholar
  19. 19.
    M. Raei, M.R. Toroghinejad, R. Jamaati, and J.A. Szpunar: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7068–73.CrossRefGoogle Scholar
  20. 20.
    R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3573–80.CrossRefGoogle Scholar
  21. 21.
    R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar: Mater. Sci. Technol., 2012, vol. 28, pp. 406–10.CrossRefGoogle Scholar
  22. 22.
    H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier: Scripta Mater., 2009, vol. 61, pp. 717–20.CrossRefGoogle Scholar
  23. 23.
    C.P. Heason and P.B. Prangnell: Mater. Sci. Forum, 2002, vols. 408–412, pp. 733–38.Google Scholar
  24. 24.
    H.W. Kim, S.B. Kang, N. Tsuji, and Y. Minamino: Acta Mater., 2005, vol. 53, pp. 1737–49.CrossRefGoogle Scholar
  25. 25.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, U.K., 2004.Google Scholar
  26. 26.
    L. Chen, Q. Shi, D. Chen, S. Zhou, J. Wang, and X. Luo: Mater. Sci. Eng. A, 2009, vol. 508, pp. 37–42.CrossRefGoogle Scholar
  27. 27.
    M. Shaarbaf and M.R. Toroghinejad: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1693–1700.CrossRefGoogle Scholar
  28. 28.
    S.G. Chowdhury, A. Dutta, B. Ravikumar, and A. Kumar: Mater. Sci. Eng. A, 2006, vol. 428, pp. 351–57.CrossRefGoogle Scholar
  29. 29.
    S. Pasebani, M.R. Toroghinejad, M. Hosseini, and J. Szpunar: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2050–56.CrossRefGoogle Scholar
  30. 30.
    D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.CrossRefGoogle Scholar
  31. 31.
    N. Hansen, X. Huang, and D.A. Hughes: Mater. Sci. Eng. A, 2001, vol. 317, pp. 3–11.CrossRefGoogle Scholar
  32. 32.
    W.C. Liu, C.S. Man, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1249–54.CrossRefGoogle Scholar
  33. 33.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelly, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.CrossRefGoogle Scholar
  34. 34.
    F. Heidelbach, H.R. Wenk, and S.R. Chen: Mater. Sci. Eng. A, 1996, vol. 215, pp. 39–49.CrossRefGoogle Scholar
  35. 35.
    J. Hirsch and K. Lucke: Acta Metall., 1988, vol. 36, pp. 2863–82.CrossRefGoogle Scholar
  36. 36.
    M.R. Toroghinejad, F. Ashrafizadeh, R. Jamaati, M. Hoseini, and J.A. Szpunar: Mater. Sci. Eng. A, 2012, vol. 556, pp. 351–57.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Mohammad Reza Toroghinejad
    • 1
  • Roohollah Jamaati
    • 1
  • Majid Hoseini
    • 2
  • Jerzy A. Szpunar
    • 3
  • Jan Dutkiewicz
    • 4
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Mining, Metals and Materials EngineeringMcGill UniversityMontrealCanada
  3. 3.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada
  4. 4.Institute of Metallurgy and Materials Science of the Polish Academy of SciencesKrakowPoland

Personalised recommendations