Abstract
A self-consistent model for non-partitioning planar ferrite growth from alloyed austenite is presented. The model captures the evolution with time of interfacial contact conditions for substitutional and interstitial solutes. Substitutional element solute drag is evaluated in terms of the dissipation of free energy within the interface, and an estimate is provided for the rate of buildup of the alloying element “spike” in austenite. The transport of the alloying elements within the interface region is modeled using a discrete-jump model, while the bulk diffusion of C is treated using a standard continuum treatment. The model is validated against ferrite precipitation and decarburization kinetics in the Fe-Ni-C, Fe-Mn-C, and Fe-Mo-C systems.
This is a preview of subscription content, access via your institution.











References
C. Zener: J. Appl. Phys., 1949, vol. 20, p. 950.
J.S. Kirkaldy: Can. J. Phys., 1958, vol. 36, p. 907.
M. Hillert: ‘‘Paraequilibrium,’’ Report of the Swedish Institute for Metal Research, Stockholm, Sweden, 1953.
G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy: Trans AIME, 1964, vol. 230, p. 1025.
D.E. Coates: Metall. Trans., 1972, vol. 3, p. 1203.
A. Hultgren: Trans. ASM, 1947, vol. 39, p. 915.
J.B. Gilmour, G.R. Purdy, and J.S. Kirkaldy: Metall. Trans., 1972, 3, 3213.
C.R. Hutchinson, A. Fuchsmann, and Y. Brechet: Metall. Mater. Trans. A, 2004, vol. 35A, p. 1221.
K. Oi, C. Lux, and G.R. Purdy: Acta Mater., 2000, vol. 48, p. 2147.
H. Guo, G.R. Purdy, M. Enomoto, and H.I. Aaronson: Metall. Mater. Trans. A, 2006, vol. 37A, p. 1721.
J. Odqvist, M. Hillert, and J. Agren: Acta Mater., 2002, vol. 50, p. 3211.
M. Hillert and B. Sundman: Acta Metall., 1977, vol. 24, p. 731.
H. Guo and M. Enomoto: Metall. Mater. Trans. A, 2007, vol. 38A, p. 1152.
A. Viardin, B. Appolaire, E. Aeby-Gautier, and M. Goune′: Presentation at ALEMI, Avignon, 2010.
A. Phillion, H.S. Zurob, C.R. Hutchinson, H. Guo, D.V. Malakhov, J. Nakano, and G. Purdy: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1237–42.
C.R. Hutchinson, H.S. Zurob, and Y. Bréchet: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1711.
H.S. Zurob, C.R. Hutchinson, Y. Bréchet, H. Seyedrezai, and G.R. Purdy: Acta Mater., 2009, vol. 57, p. 2781.
H.S. Zurob, C.R. Hutchinson, A. Béché, G.R. Purdy, and Y.J.M. Bréchet: Acta Mater., 2008, vol. 56, p. 2203.
H.S. Zurob, C.R. Hutchinson, Y. Bréchet, and G.R. Purdy: Solid–Solid Phase Transformations in Inorganic Materials 2005, TMS, Warrendale, PA, 2005, p. 111.
H. Chen and S. van der Zwaag: J. Mater. Sci., 2011, vol. 46, p. 649.
H. Chen and S. van der Zwaag: Phil. Mag. Lett., 2012, vol. 92, p. 86.
J.W. Cahn: Acta Metall., 1962, vol. 10, p. 789.
M. Hillert: Acta Mater., 1999, Vol. 47, p. 4481.
G.R. Purdy and Y.J.M. Bréchet: Acta Metall. Mater., 1995, vol. 43, p. 3763.
K.Lücke and H.P. Stüwe: Acta Metall., 1971, vol. 19, p. 1087.
G.R. Purdy: Ph.D. Thesis, McMaster University, Canada, 1962.
M. Hillert: Proceedings ICSTIS, Suppl. Trans. ISIJ, 1971, vol. 11, p. 1153.
H. Oikawa, J.-F. Remy, and A.G. Guy: Trans. ASM1968, vol. 61, p. 110.
B. Sundman, B. Jansson, and J.O Andersson: CALPHAD, 1985, vol. 9, p. 153.
J. Agren: Acta Metall., 1986, vol. 20, p. 1507.
A. Béché, H.S. Zurob, and C.R. Hutchinson: Metall. Mater. Trans. A, 2007, vol. 38A, p. 2950.
M. Hillert: in Lectures on the Theory of Phase Transformation, H.I Aaronson, ed., TMS, Warrendale, PA, 1999, p. 1–33.
C. Sinclair, C.R. Hutchinson, and Y. Bréchet: Metall. Mater. Trans. A, 2007, vol. 38A, p. 821.
Z.K. Liu: Metall. Mater. Trans. A, 1997, vol. 28A, p. 1625.
F. Fazeli and M. Militzer: Metall. Mater. Trans. A, 2006, vol. 36A, p. 1395.
M. Suehiro, Z.K Liu, and J. Agren: Acta Mater., 1996, vol. 44, p. 4241.
H. Larsson and A. Borgenstam, Scripta Mater., 2007, vol. 56, p. 61.
P. Maugis and G. Martin: Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 49, p. 11580.
P. Bellon and G. Martin: Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, p. 1.
C. Qiu, H.S. Zurob, D. Panahi, Y.J.M. Bréchet, G.R. Purdy, and C.R. Hutchinson: unpublished research.
M. Gouné: private communications.
A.R. Troiano and F.T. McGuire: Trans. Am. Soc. Met., 1943, vol. 31, p. 340.
M. Hillert, T. Wada, and H. Wada: JISI, 1967, vol. 205, p. 539.
K.K. Srivastava and J.S. Kirkaldy: Metall. Trans. A, 1982, vol. 13A, p. 2113.
W. Huang: Metall. Trans. A, 1990, vol. 21A, p. 2115.
H. Guo and G.R. Purdy: Metall. Mater. Trans. A, 2008, vol. 39A, p. 950.
Acknowledgments
HSZ, DP, and GP gratefully acknowledge the financial support of the Natural Science and Engineering Research Council of Canada. CRH gratefully acknowledges the award of a Future Fellowship from the Australian Research Council. The authors also wish to acknowledge many stimulating discussions with the ALEMI community.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted June 30, 2012.
Appendix
Appendix
The phase equilibria between ferrite and austenite in the Fe-Mn system were experimentally investigated by Triano and McGuire,[42] Hillert,[43] and Srivastava and Kirkaldy.[44] The last authors reported the 95 pct confidence interval of their measurements as ±3 pct. The experimental data are summarized in Figure 12 along with the thermodynamic model due to Huang,[45] which is the basis of the TCFE2 database of ThermoCalc. It is clear from the comparison that the pioneering treatment of Huang[45] systematically underestimates the solubility of Mn in ferrite at high temperatures. The discrepancy is, arguably, insignificant for most applications. In the present case, however, the difference between the experiments and model predictions at 1095 K (822 °C) is sufficient to change the interpretation of the decarburization data at 1098 K (825 °C); PE is predicted if the description of Reference 45 is used, while LENP would be predicted if one modified the description to fit the experimental data of Srivastava and Kirkaldy[44] at 1095 K (822 °C). We have, therefore, modified the description of Reference 45 in order to produce a better fit of the experimental data as shown by the dashed curves in Figure 12. The modifications were limited to one parameter, namely
This description was used for all calculations on the Fe-Mn-C system in this contribution. A more thorough examination of the thermodynamics, including new experimental data between 1095 K and 1173 K (822 °C and 900 °C), seems necessary in order to reach definitive conclusions as to the operating interfacial conditions during decarburization at high temperatures.
Rights and permissions
About this article
Cite this article
Zurob, H.S., Panahi, D., Hutchinson, C.R. et al. Self-Consistent Model for Planar Ferrite Growth in Fe-C-X Alloys. Metall Mater Trans A 44, 3456–3471 (2013). https://doi.org/10.1007/s11661-012-1479-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-012-1479-8
Keywords
- Ferrite
- Austenite
- Decarburization
- Carbon Diffusion
- Solute Drag