Skip to main content

Advertisement

Log in

Development of a High-Strength Ultrafine-Grained Ferritic Steel Nanocomposite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article describes the microstructural and mechanical properties of 12YWT oxide-dispersion-strengthened (ODS)-ferritic steel nanocomposite. According to the annealing results obtained from X-ray diffraction line profile analysis on mechanically alloyed powders milled for 80 hours, the hot extrusion at 1123 K (850 °C) resulted in a nearly equiaxed ultrafine structure with an ultimate tensile strength of 1470 MPa, yield strength of 1390 MPa, and total elongation of 13 pct at room temperature comparable with high-strength 14YWT ODS steel. Maximum total elongation was found at 973 K (600 °C) where fractography of the tensile specimen showed a fully ductile dimple feature compared with the splitting cracks and very fine dimpled structure observed at room temperature. The presence of very small particles on the wall of dimples at 1073 K (800 °C) with nearly chemical composition of the matrix alloy was attributed to the activation of the boundaries decohesion mechanism as a result of diffusion of solute atoms. The results of Charpy impact test also indicated significant improvement of transition temperature with respect to predecessor 12YWT because of the decreased grain size and more homogeneity of grain size distribution. Hence, this alloy represented a good compromise between the strength and Charpy impact properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.L. Murty and I. Charit: J. Nucl. Mater., 2008, vol. 383, pp. 189–95.

    Article  CAS  Google Scholar 

  2. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer: J. Nucl. Mater., 2005, vol. 341, pp. 103–14.

    Article  CAS  Google Scholar 

  3. K. West: Ph.D. Dissertation, University of Tennessee, Knoxville, TN, 2006.

  4. C.C. Eiselt, M. Klimenkov, R. Lindau, A. Möslang, H.R.Z. Sandim, A.F. Padilha, and D. Raabe: J. Nucl. Mater., 2009, vol. 385, pp. 231–35.

    Article  CAS  Google Scholar 

  5. M.K. Miller, K.F. Russell, and D.T. Hoelzer: J. Nucl. Mater., 2006, vol. 351, pp. 261–68.

    Article  CAS  Google Scholar 

  6. J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P. Sarosi, M. Heilmaier, and D. Sturm: Scripta Mater., 2009, vol. 61, pp. 793–96.

    Article  CAS  Google Scholar 

  7. T. Hayashi, P.M. Sarosi, J.H. Schneibel, and M.J. Mills: Acta Mater., 2008, vol. 56, pp. 1407–16.

    Article  CAS  Google Scholar 

  8. D.T. Hoelzer, J. Bentley, M.A. Sokolov, M.K. Miller, G.R. Odette, and M.J. Alinger: J. Nucl. Mater., 2007, vols. 367–370, pp. 166–72.

    Article  Google Scholar 

  9. D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, and R.K. Nanstad: J. Nucl. Mater., 2009, vol. 392, pp. 353–59.

    Article  CAS  Google Scholar 

  10. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, and K. Miyahara: J. Nucl. Mater, 2002, vols. 307–311, pp. 773–77.

    Article  Google Scholar 

  11. M.A. Sokolov, D.T. Hoelzer, R.E. Stoller, and D.A. McClintock: J. Nucl. Mater., 2007, vols. 367–370, pp. 213–16.

  12. P. Olier, A. Bougault, A. Alamo, and Y. de Carlan: J. Nucl. Mater., 2009, vols. 386–388, pp. 561–63.

  13. H. Hadraba, B. Fournier, L. Stratil, J. Malaplate, A.-L.Rouffié, P. Wident, L. Ziolek, and J.-L.Béchade: J. Nucl. Mater., 2011, vol. 411, pp. 112–18.

    Article  CAS  Google Scholar 

  14. D. Mukhopadhyay: Ph.D. Dissertation, University of Idaho, Moscow, ID, 1996.

  15. R. Rahmanifard, H. Farhangi, and A.J. Novinrooz: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6853–57.

    Article  Google Scholar 

  16. H. Sakasegawa, L. Chaffron, F. Legendre, L. Boulanger, T. Cozzika, M. Brocq, and Y. de Carlan: J. Nucl. Mater., 2009, vol. 384, pp. 115–18.

  17. R. Rahmanifard, H. Farhangi, A.J. Novinrooz, and N. Afshari: J. Mater. Sci., 2010, vol. 45, pp. 6498–6504.

    Article  CAS  Google Scholar 

  18. H.S. Shin, J.S. Park, and H.M. Lee: Int. J. Mod. Phys. B, 2008, vol. 22, pp. 1496–1503.

    Article  CAS  Google Scholar 

  19. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon Elsevier, New York, NY, 2004.

  20. B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3rd ed., Prentice Hall Inc., Upper Saddle River, NJ, 2001.

  21. M.J. Alinger, G.R. Odette, and D.T. Hoelzer: Acta Mater, 2009, vol. 57, pp. 392–406.

    Article  CAS  Google Scholar 

  22. C. Heintze, F. Bergner, A. Ulbricht, M. Hernández-Mayoral, U. Keiderling, R. Lindau, and T. Weissgärber: J. Nucl. Mater., 2011, vol. 416, pp. 35–39.

    Article  CAS  Google Scholar 

  23. B. Pichler, C. Hellmichz, and H.A. Mang: Int. J. Num. Anal. Met., 2007, vol. 31, pp. 111–32.

    Article  Google Scholar 

  24. J.H. Kim, T.S. Byun, and D.T. Hoelzer: J. Nucl. Mater., 2010, vol. 407, pp. 143–50.

    Article  CAS  Google Scholar 

  25. F. Tang and J.M. Schoenung: Mater Sci. Eng. A, 2008, vol. 493, pp. 101–03.

    Article  Google Scholar 

  26. ASM Handbook: Fractography, 2nd ed., vol. 12, ASM International, Materials Park, OH, 1992.

  27. J. Blach, L. Falat, and P. Sevc: Eng. Fail Anal., 2009, vol. 16, pp. 1397–403.

    Article  CAS  Google Scholar 

  28. Z. Oksiuta and N. Baluc: J. Nucl. Mater., 2008, vol. 374, pp. 178–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the school of materials research of NSTRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Rahmanifard.

Additional information

Manuscript submitted February 25, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmanifard, R., Farhangi, H., Novinrooz, A.J. et al. Development of a High-Strength Ultrafine-Grained Ferritic Steel Nanocomposite. Metall Mater Trans A 44, 990–998 (2013). https://doi.org/10.1007/s11661-012-1429-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1429-5

Keywords

Navigation