Skip to main content

Advertisement

Log in

Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in γ(bcc) Uranium-Molybdenum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning’s formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Keiser D, Hayes S, Meyer M, Clark C. JOM 2003;55:55.

    Article  CAS  Google Scholar 

  2. Snelgrove JL, Hofman GL, Meyer MK, Trybus CL, Wiencek TC. Nucl Eng Des 1997;178:119.

    Article  CAS  Google Scholar 

  3. Lemoine P, Wachs D (2007) Advanced Nuclear Fuel Cycles and Systems, Boise, Idaho.

    Google Scholar 

  4. Meyer MK, Hofman GL, Hayes SL, Clark CR, Wiencek TC, Snelgrove JL, Strain RV, Kim KH. J Nucl Mater 2002;304:221.

    Article  CAS  Google Scholar 

  5. Leenaers A, Van den Berghe S, Koonen E, Jarousse C, Huet F, Trotabas M, Boyard M, Guillot S, Sannen L, Verwerft M. J Nucl Mater 2004;335:39.

    Article  CAS  Google Scholar 

  6. Perez E, Yao B, Keiser DD, Sohn YH. J Nucl Mater 2010;402:8.

    Article  CAS  Google Scholar 

  7. Keiser DD, Jue JF, Yao B, Perez E, Sohn Y, Clark CR. J Nucl Mater 2011;412:90.

    Article  CAS  Google Scholar 

  8. Yao B, Perez E, Keiser Jr DD, Jue J-F, Clark CR, Woolstenhulme N, Sohn Y. J Alloys Compd 2011;509:9487.

    Article  CAS  Google Scholar 

  9. Perez E, Keiser D, Sohn Y. Metall Mater Trans A 2011;42:3071.

    Article  Google Scholar 

  10. Leenaers A, Van den Berghe S, Van Renterghem W, Charollais F, Lemoine P, Jarousse C, Rohrmoser A, Petry W. J Nucl Mater 2011;412:41.

    Article  CAS  Google Scholar 

  11. Liu X, Lu TC, Xing ZH, Qian DZ. Rare Metal Mat Eng 2011;40:1125.

    CAS  Google Scholar 

  12. Mazaudier F, Proye C, Hodaj F. J Nucl Mater 2008;377:476.

    Article  CAS  Google Scholar 

  13. Komar C, Mirandou M, Aricó S, Balart S, Gribaudo L (2009) J Nucl Mater 395:162.

    Article  CAS  Google Scholar 

  14. Kim Y, Hofman G, Ryu H, Hayes S. J Phase Equilib Diff 2006;27:614.

    CAS  Google Scholar 

  15. Ryu H, Park J, Kim C, Kim Y, Hofman G. J Phase Equilib Diff 2006;27:651.

    CAS  Google Scholar 

  16. Lundberg LB. J Nucl Mater 1989;167:64.

    Article  Google Scholar 

  17. Adda Y, Philibert J. Compt. rend. 1958;246:113.

    CAS  Google Scholar 

  18. Adda Y, Kirianenko A. J Nucl Mater 1959;1:120.

    Article  CAS  Google Scholar 

  19. Adda Y, Kirianenko A, Mairy C. J Nucl Mater 1959;1:300.

    Article  CAS  Google Scholar 

  20. Adda Y, Kirianenko A. J Nucl Mater 1962;6:130.

    Article  CAS  Google Scholar 

  21. Pavlinov L, Nakonechnikov A, Bykov V. Atomic Energy 1965;19:1495.

    Article  Google Scholar 

  22. Fedorov GB, Smirnov EA, Zhomov FI, Gusev VN, Paraev SA. Atomic Energy 1971;31:1280.

    Article  Google Scholar 

  23. Adda Y, Kirianenko A. J Nucl Mater 1962;6:135.

    Article  CAS  Google Scholar 

  24. Manning J. Metall Mater Trans B 1970;1:499.

    Article  Google Scholar 

  25. H. Mehrer, ed.: Diffusion in Solid, Springer, Berlin, 2007.

  26. Loo FV. Prog Solid State Chem 1990;20:47.

    Article  Google Scholar 

  27. Parida SC, Dash S, Singh Z, Prasad R, Venugopal V. J Phys Chem Solids 2001;62:585.

    Article  CAS  Google Scholar 

  28. Brandes EA, Brook GB (1992)Smithells Metals Reference Book, 7th edn. Butterworth-Heinemann, Bodmin, U.K.

    Google Scholar 

  29. Berche A, Dupin N, Guéneau C, Rado C, Sundman B, Dumas JC. J Nucl Mater 2011;411:131.

    Article  CAS  Google Scholar 

  30. Shewmon P (1989) Diffusion in Solids. Wiley, New York.

    Google Scholar 

  31. Ogata T, Akabori M, Itoh A, Ogawa T. J Nucl Mater 1996;232:125.

    Article  CAS  Google Scholar 

  32. Hall LD. J. Chem. Phys. 1953;21:3.

    Article  Google Scholar 

  33. Zhang X, Cui YF, Xu GL, Zhu WJ, Liu HS, Yin BY, Jin ZP. J Nucl Mater 2010;402:15.

    Article  CAS  Google Scholar 

  34. Brewer L, Lamoreaux RH, Ferro R, Marazza R, Girgis K. Atomic energy review 1980;7:336.

    Google Scholar 

  35. Garg SP, Ackermann RJ. J Nucl Mater 1977;64:265.

    Article  CAS  Google Scholar 

  36. Vamberskii YV, Udovskiy AL, Ivanov OS. J Nucl Mater 1973;46:192.

    Article  CAS  Google Scholar 

  37. R.Gaskell D (2009) Introduction to the Thermodynamics of Materials, 4th edn. Taylor & Francis, New York.

    Google Scholar 

Download references

Acknowledgment

This study was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), the National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for the purpose of the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongho Sohn.

Additional information

Manuscript submitted January 20, 2012.

Appendix: Thermodynamic Description of γ(bcc) Phase in U-Mo System

Appendix: Thermodynamic Description of γ(bcc) Phase in U-Mo System

Thermodynamic activity factors of U, \( a_{\rm U} , \) as a function of N U at a given temperature, were evaluated using the ideal solution, regular solution, and subregular solution models. The \( a_{\rm U} \) is related to N U by the activity coefficient γU as[37]:

$$ a_{\rm U} = \gamma_{\rm U} \cdot N_{\rm U} $$
(A1)

In the ideal solution model, the interaction between U and Mo is ignored,[37] and the γU is unity. Therefore, \( a_{\rm U} \) is equal to N U.

In both the regular solution and subregular solution models, γU is not unity and can be derived from the molar excess Gibbs free energy, \( \Updelta G^{E} . \) This is expressed as[37]

$$ \Updelta G^{E} = N_{\rm{Mo}} \Updelta \bar{G}_{\rm{Mo}}^{E} + N_{\rm U} \Updelta \bar{G}_{\rm U}^{E} = \Upomega N_{\rm{Mo}} N_{\rm U} $$
(A2)

where, Ω is a parameter in the regular solution model and is a function of N Mo or N U in the subregular solution model. \( \Updelta \bar{G}_{{\text{U \;or\; Mo}}}^{E} \) is the partial molar excess Gibbs free energy of U or Mo and is related to its respective γ as[37]

$$ \Updelta \bar{G}_{i}^{E} = RT\ln \left( {\gamma_{i} } \right) = \Upomega N_{j}^{2} \quad \left( {i \ne j} \right) $$
(A3)

where, R is the molar gas constant with a value of 8.31 J/mol K, and T is the temperature in Kelvin.

The molar excess Gibbs free energy, \( \Updelta G^{\text{E}} , \) of U-Mo alloy (γ phase) in the temperature range from 838 K to 1557 K (565 °C to 1284 °C) is given by Parida[27] as

$$ \Updelta G^{E} = N_{\rm U} \left( {1 - N_{\rm U} } \right)\left\{ {\left( {21.533 - \frac{33.680T}{1000}} \right)N_{\rm U} + \left( {\frac{25.698T}{1000} - 2.120} \right)} \right\} $$
(A4)

In the regular solution model, \( \Updelta G^{E} \) at a specific composition and temperature is calculated using Eq. [A4]. Then the value of \( \Updelta G^{\text{E}} \) is applied to determine Ω through Eq. [A2]. Finally, γU is obtained by substituting the value of Ω into Eq. [A3].

The subregular solution model can be more flexible than the regular solution model because it arbitrarily allows Ω to vary with composition as \( \Upomega = a + bN_{\rm U} \).[36] Thus, Eq. [A2] can derive to

$$ \Updelta G^{E} = \left( {a + bN_{\rm U} } \right)N_{\rm U} N_{\rm{Mo}} = N_{\rm U} \left( {1 - N_{\rm U} } \right)\left( {bN_{\rm U} + a} \right) $$
(A5)

where a and b can be determined through equating the corresponding terms in Eqs. [A4] and [A5] and can then be utilized to calculate the value of Ω to obtain γU. The value of in \( a_{\rm U} \) either the regular or subregular solution models is then simply determined by substituting γU into Eq. [A1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Keiser, D.D. & Sohn, Y. Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in γ(bcc) Uranium-Molybdenum Alloy. Metall Mater Trans A 44, 738–746 (2013). https://doi.org/10.1007/s11661-012-1425-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1425-9

Keywords

Navigation