Skip to main content
Log in

Analysis of Tensile Stress-Strain and Work-Hardening Behavior in 9Cr-1Mo Ferritic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Detailed analysis on tensile true stress (σ)-true plastic strain (ε) and work-hardening behavior of 9Cr-1Mo steel have been performed in the framework of the Voce relationship and Kocks-Mecking approach for wide range of temperatures, 300 K to 873 K (27 °C to 600 °C) and strain rates (6.33 × 10−5 to 6.33 × 10−3 s−1). At all test conditions, σ-ε data were adequately described by the Voce equation. 9Cr-1Mo steel exhibited two-stage work-hardening behavior characterized by a rapid decrease in instantaneous work-hardening rate (θ = /) with stress at low stresses (transient stage) followed by a gradual decrease in θ at high stresses (stage III). The variations of work-hardening parameters and θ-σ as a function of temperature and strain rate exhibited three distinct temperature regimes. Both work-hardening parameters and θ-σ displayed signatures of dynamic strain aging at intermediate temperatures and dominance of dynamic recovery at high temperatures. Excellent correlations have been obtained between work-hardening parameters evaluated using the Voce relationship and the respective tensile properties. A comparison of work-hardening parameters obtained using the Voce equation and Kocks-Mecking approach suggested an analogy between the two for the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D.S. Wood, A.B. Baldwin, F.W. Grounds, J. Wynn, E.G. Wilson, and J. Waring: Ferritic Steels for Fast Reactor Steam Generators, S.F. Pugh and E.A. Little, eds., British Nuclear Energy Society, London, U.K., 1977, pp. 189–92.

  2. S.J. Sanderson: Ferritic Steels for High Temperature Applications, A.K. Khare, ed., ASM, Materials Park, OH, 1981, pp. 85–99.

  3. V.K. Sikka: Ferritic Alloys for Use in Nuclear Energy Technologies, J.W. Davies and D.J. Michael, eds., TMS-AIME, Warrendale, PA, 1984, pp. 317–27.

  4. B.J. Cane and R.S. Fidler: Ferritic Steels for Fast Reactor Steam Generators, S.F. Pugh and E.A. Little, eds., British Nuclear Energy Society, London, U.K., 1977, pp. 193–99.

  5. A. Alamo, J.L. Bertin, V.K. Shamardin, and P. Wident: J. Nucl. Mater., 2007, vols. 367–370, pp. 54–59.

  6. K.J. Harrelson, S.H. Rou, and R.C. Wilcox: J. Nucl. Mater., 1986, vols. 141–143, pp. 508–12.

  7. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  8. P. Ludwik: Elements der Technologischen Mechanik, Verlag Von Julius Springer, Leipzig, Germany, 1909, p. 32.

  9. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–18.

    Article  Google Scholar 

  10. D.C. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825–28.

    Article  CAS  Google Scholar 

  11. E. Voce: J. Inst. Metall., 1948, vol. 74, pp. 537–62.

    CAS  Google Scholar 

  12. E. Voce: Metallurgia, 1955, vol. 51, pp. 219–26.

    Google Scholar 

  13. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.

    Article  CAS  Google Scholar 

  14. H. Mecking and U.F. Kocks: Acta Metall. Mater., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  15. Y. Estrin and H. Mecking: Acta Metall. Mater., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  16. Y. Estrin: in Unified Constitutive Laws for Plastic Deformation, A.S. Krausz and K. Krausz, eds., Academic Press, New York, NY, 1996, pp. 69–106.

  17. N.S. Mishra, S. Mishra, and V. Ramaswamy: Metall. Trans. A, 1989, vol. 20A, pp. 2819–29.

    CAS  Google Scholar 

  18. R. Kishore and T.K. Sinha: Metall. Mater. Trans. A., 1996, vol. 27A, pp. 3340–43.

    Article  CAS  Google Scholar 

  19. P.V. Sivaprasad, S. Venugopal, and S. Venkadesan: Metall. Mater. Trans. A, 1997, vol. 29A, pp. 171–78.

    Article  Google Scholar 

  20. B.K. Choudhary, E.I. Samuel, K. Bhanu Sankara Rao, and S.L. Mannan: Mater. Sci. Technol., 2001, vol. 17, pp. 223–31.

    Article  CAS  Google Scholar 

  21. C.G. Shastry, M.D. Mathew, K. Bhanu Sankara Rao, and S.L. Mannan: Int. J. Pres. Ves. Pip., 2004, vol. 81, pp. 297–301.

    Article  CAS  Google Scholar 

  22. C.A. Hippsley and N.P. Haworth: Mater. Sci. Technol., 1998, vol. 4, pp. 791–802.

    Article  Google Scholar 

  23. B.A. Senior, F.W. Noble, and B.L. Eyre: Acta Metall., 1986, vol. 34, pp. 1321–27.

    Article  CAS  Google Scholar 

  24. B.K. Choudhary, S. Saroja, K. Bhanu Sankara Rao, and S.L. Mannan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2825–34.

    Article  CAS  Google Scholar 

  25. E. Pink and A. Grinberg: Mater. Sci. Eng., 1981, vol. 51, pp. 1–8.

    Article  CAS  Google Scholar 

  26. D.P.R. Palaparti, B.K. Choudhary, E.I. Samuel, V.S. Srinivasan, and M.D. Mathew: Mater. Sci. Eng. A, 2012, vol. 538, pp. 110–17.

    Article  CAS  Google Scholar 

  27. “Design and Construction Rules for Mechanical Components of FBR Nuclear Islands,” RCC-MR, Section 1, Subsection Z, Appendix A3.18S.22, 2002.

  28. B.K. Choudhary, V.S. Srinvasan, and M.D. Mathew: Mater. High Temp., 2011, vol. 28, pp. 155–61.

    Article  CAS  Google Scholar 

  29. B.K. Choudhary, K. Bhanu Sankara Rao, S.L. Mannan, and B.P. Kashyap: Mater. Sci. Technol., 1999, vol. 15, pp. 791–97.

    CAS  Google Scholar 

  30. A.K. Roy, P. Kumar, and D. Maitra: Mater. Sci. Eng. A, 2009, vol. 499, pp. 379–86.

    Article  Google Scholar 

  31. D.J. Dingley and D. McLean: Acta Metall., 1967, vol. 15, pp. 885–901.

    Article  CAS  Google Scholar 

  32. A.M. Garde, A.T. Santhanam, and R.E. Reed-Hill: Acta Metall. Mater., 1972, vol. 20, pp. 215–20.

    Article  CAS  Google Scholar 

  33. D.J. Michel, J. Moteff, and A.J. Lovell: Acta Metall., 1973, vol. 21, pp. 1269–77.

    Article  CAS  Google Scholar 

  34. J.G. Morris: Mater. Sci. Eng., 1974, vol. 13, pp. 101–08.

    Article  CAS  Google Scholar 

  35. E. Hornbogan: Trans. TMS-ASM, 1964, vol. 57, pp. 120–32.

    Google Scholar 

  36. J.W. Edington and R.E. Smallman: Acta Metall., 1964, vol. 12, pp. 1313–28.

    Article  CAS  Google Scholar 

  37. B.P. Kashyap, K. McTaggart, and K. Tangri: Philos. Mag., 1988, vol. 57, pp. 97–114.

    Article  CAS  Google Scholar 

  38. S. Okamato, D.K. Matlock, and G. Krauss: Scripta Metall., 1991, vol. 25, pp. 39–44.

    Article  Google Scholar 

  39. P. Spatig, N. Baluc, and M. Victoria: Mater. Sci. Eng. A, 2001, vols. 309–310, pp. 425–29.

  40. R. Bonade and P. Spatig: Mater. Sci. Eng. A, 2005, vols. 400–401, pp. 234–40.

  41. G. Gottstein and A.S. Argon: Acta Metall. Mater., 1987, vol. 35, pp. 1261–71.

    Article  CAS  Google Scholar 

  42. U.F. Kocks: Mechanical Testing for Deformation Model Developmnent, R.W. Rohde and J.C. Swearengen, eds., ASTM STP 765, American Scociety for Testing and Materials, Philadelphia, PA, 1982, pp. 121–38.

  43. H.J. Kleemola and M.A. Nieminen: Metall. Trans., 1974, vol. 5, pp. 1863–66.

    Article  CAS  Google Scholar 

  44. Y. Tomita and K. Okabayashi: Metall. Trans. A., 1984, vol. 16A, pp. 2247–49.

    Google Scholar 

  45. X. Feaugas: Acta Mater., 1999, vol. 47, pp. 3617–32.

    Article  CAS  Google Scholar 

  46. T. Takeuchi: Jpn. J. Appl. Phys., 1970, vol. 9, pp. 391–400.

    Article  CAS  Google Scholar 

  47. A. Matsuda: J. Jpn Inst. Metal., 1976, vol. 40, p. 270.

    CAS  Google Scholar 

  48. E.I. Samuel, B.K. Choudhary, and K. Bhanu Sankara Rao: Scripta Mater., 2002, vol. 46, pp. 507–12.

    Article  CAS  Google Scholar 

  49. D. McLean: Mechanical Properties of Metals, R.E. Krieger Publishing Company, New York, NY, 1977, pp. 114–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Choudhary.

Additional information

Manuscript submitted June 30, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, B.K., Palaparti, D.P.R. & Samuel, E.I. Analysis of Tensile Stress-Strain and Work-Hardening Behavior in 9Cr-1Mo Ferritic Steel. Metall Mater Trans A 44, 212–223 (2013). https://doi.org/10.1007/s11661-012-1385-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1385-0

Keywords

Navigation