Metallurgical and Materials Transactions A

, Volume 43, Issue 10, pp 3423–3427 | Cite as

Effect of Al on the NiAl-Type B2 Precipitates in Ferritic Superalloys

  • Shenyan Huang
  • Gautam Ghosh
  • Xin Li
  • Jan Ilavsky
  • Zhenke Teng
  • Peter K. Liaw
Communication

Abstract

Ultra-small-angle X-ray scattering (USAXS) is employed to quantify the average size, interparticle spacing, and volume fraction of the primary B2 precipitates in Fe-based superalloys with varying Al concentration. The results are analyzed with a model incorporating polydispersity and interference effects and verified by transmission electron microscopy (TEM) characterizations. As the Al amount increases from 4 to 10 mass pct, there is an approximately 40 pct decrease in the average interparticle spacing and ~30 pct reduction in the average particle diameter.

References

  1. 1.
    C. Stallybrass, A. Schneider, and G. Sauthoff: Intermetallics, 2005, vol. 13, pp. 1263–68.CrossRefGoogle Scholar
  2. 2.
    S.M. Zhu, S.C. Tjong, and J.K.L. Lai: Acta Mater., 1998, vol. 46, pp. 2969–76.CrossRefGoogle Scholar
  3. 3.
    R. Taillard, A. Pineau, and B.J. Thomas: Mater. Sci. Eng., 1982, vol. 54, pp. 209–19.CrossRefGoogle Scholar
  4. 4.
    Z.K. Teng, C.T. Liu, G. Ghosh, P.K. Liaw, and M.E. Fine: Intermetallics, 2010, vol. 18, pp. 1437–43.CrossRefGoogle Scholar
  5. 5.
    Z.K. Teng, M.K. Miller, G. Ghosh, C.T. Liu, S. Huang, K.F. Russel, and P.K. Liaw: Scripta Mater., 2010, vol. 63, pp. 61–64.CrossRefGoogle Scholar
  6. 6.
    H.A. Calderon: Ph.D. Dissertation, Northwestern University, Evanston, IL, 1986.Google Scholar
  7. 7.
    C. Stallybrass and G. Sauthoff: Mater. Sci. Eng. A, 2004, vol. 387, pp. 985–90.CrossRefGoogle Scholar
  8. 8.
    M.E. Kassner and M.-T. Perez-Prado: Fundamentals of Creep in Metals and Alloys, 1st ed., Elsevier, New York, NY, 2004, pp. 151–69.Google Scholar
  9. 9.
    J. Ilavsky, P.R. Jemian, A.J. Allen, F. Zhang, L.E. Levine, and G.G. Long: J. Appl. Crystallogr., 2009, vol. 42, pp. 469–79.CrossRefGoogle Scholar
  10. 10.
    J. Ilavsky and P.R. Jemian: J. Appl. Crystallogr., 2009, vol. 42, pp. 347–53.CrossRefGoogle Scholar
  11. 11.
    T. Zemb and P. Lindner: Neutron, X-rays and Light. Scattering Methods Applied to Soft Condensed Matter, 1st ed., Elsevier, Amsterdam, The Netherlands, 2002, p. 60.Google Scholar
  12. 12.
    F. Farsaci, M.E. Fontanella, G. Salvato, F. Wanderlingh, R. Giordano, and U. Wanderlingh: Phys. Chem. Liq., 1989, vol. 20, pp. 205–20.CrossRefGoogle Scholar
  13. 13.
    O. Glatter and O. Kratky: Small Angle X-ray Scattering, Academic Press, London, UK, 1982, pp. 17–51.Google Scholar
  14. 14.
    D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., CRC Press, Boca Raton, FL, 2002, p. 267.Google Scholar
  15. 15.
    V.S. Raghunathan and B.D. Sharma: Philos. Mag. A, 1981, vol. 43, pp. 427–40.CrossRefGoogle Scholar
  16. 16.
    A. Broska, J. Wolff, M. Franz, and T. Hehenkamp: Intermetallics, 1999, vol. 7, pp. 259–67.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Shenyan Huang
    • 1
    • 2
  • Gautam Ghosh
    • 3
  • Xin Li
    • 4
    • 5
  • Jan Ilavsky
    • 6
  • Zhenke Teng
    • 1
    • 7
  • Peter K. Liaw
    • 1
  1. 1.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA
  2. 2.GE Global ResearchNiskayunaUSA
  3. 3.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  4. 4.Indiana University Center for the Exploration of Energy and MatterBloomingtonUSA
  5. 5.Physics DepartmentIndiana UniversityBloomingtonUSA
  6. 6.X-Ray Science Division, Advanced Photon SourceArgonne National LaboratoryArgonneUSA
  7. 7.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations