Metallurgical and Materials Transactions A

, Volume 43, Issue 12, pp 4633–4646 | Cite as

Modeling of the Effect of Temperature, Frequency, and Phase Transformations on the Viscoelastic Properties of AA 7075-T6 and AA 2024-T3 Aluminum Alloys

  • Jose I. RojasEmail author
  • Daniel Crespo


The viscoelastic response of commercial aluminum alloys 7075-T6 and 2024-T3 as a function of temperature is presented. Experimental data are obtained with a dynamic-mechanical analyzer (DMA) at different loading frequencies and compared with the available transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) data. The effect of successive microstructural transformations (particle precipitation and redissolution) is revealed. An analytical model is developed, which fits the mechanical response up to 573 K (300 °C). The model takes into account the concentration of Guinier-Preston Zones (GPZ) and metastable precipitates (η′ in AA 7075-T6 and θ′/S′ in AA 2024-T3), allowing us to determine the kinetic parameters of these transformations. The activation energies were previously obtained by several authors from DSC measurements and other techniques, showing considerable dispersion. The presented data, obtained with a completely different technique, allow us to reduce the uncertainty on these data and show the potential of DMA measurements in the study of microstructural transformations.


Aluminum Alloy Storage Modulus Loss Modulus Viscoelastic Response Avrami Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the MICINN Grant MAT2010-14907 and Generalitat de Catalunya Grant 2009SGR01251.


  1. 1.
    A.S. Nowick and B.S. Berry: Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972.Google Scholar
  2. 2.
    Y.M. Soifer, N.P. Kobelev, L.G. Brodova, A.N. Mannkhin, E. Korin, and L. Soifer: Nanostruct. Mater., 1999, vol. 12, pp. 875–78.CrossRefGoogle Scholar
  3. 3.
    S. Abis, M. Massazza, P. Mengucci, and G. Riontino: Scripta Mater., 2001, vol. 45, pp. 685–91.CrossRefGoogle Scholar
  4. 4.
    G. Bierwagen: J. Coat. Technol., 2001, vol. 73, pp. 45–52.CrossRefGoogle Scholar
  5. 5.
    A.J. Vreugdenhil, V.N. Balbyshev, and M.S. Donley: J. Coat. Technol., 2001, vol. 73, pp. 35–43.CrossRefGoogle Scholar
  6. 6.
    R.M. Chlistovsky, P.J. Heffernan, and D.L. DuQuesnay: Int. J. Fatigue, 2007, vol. 29, pp. 1941–49.CrossRefGoogle Scholar
  7. 7.
    E.A. Starke and J.T. Staley: Prog. Aerosp. Sci., 1996, vol. 32, pp. 131–72.CrossRefGoogle Scholar
  8. 8.
    R. Ferragut, A. Somoza, and A. Dupasquier: J. Phys. Condens. Matter, 1996, vol. 8, pp. 8945–52.CrossRefGoogle Scholar
  9. 9.
    T. Engdahl, V. Hansen, P.J. Warren, and K. Stiller: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2002, vol. 327, pp. 59–64.CrossRefGoogle Scholar
  10. 10.
    C.E. Macchi, A. Somoza, A. Dupasquier, and I.J. Polmear: Acta Mater., 2003, vol. 51, pp. 5151–58.CrossRefGoogle Scholar
  11. 11.
    F. Viana, A.M.P. Pinto, H.M.C. Santos, and A.B. Lopes: J. Mater. Process. Technol., 1999, vol. 93, pp. 54–59.CrossRefGoogle Scholar
  12. 12.
    G.W. Smith: Thermochim. Acta, 1998, vol. 317, pp. 7–23.CrossRefGoogle Scholar
  13. 13.
    S. Abis, P. Mengucci, and G. Riontino: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1996, vol. 214, pp. 153–60.CrossRefGoogle Scholar
  14. 14.
    C. Badini, F. Marino, and E. Verne: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1995, vol. 191, pp. 185–91.CrossRefGoogle Scholar
  15. 15.
    A.K. Jena, A.K. Gupta, and M.C. Chatuverdi: Acta Metall., 1989, vol. 37, pp. 885–95.CrossRefGoogle Scholar
  16. 16.
    T.J. Konno, M. Kawasaki, and K. Hiraga: J. Electron Microsc., 2001, vol. 50, pp. 105–11.CrossRefGoogle Scholar
  17. 17.
    J.I. Gersten and F.W. Smith: The Physics and Chemistry of Materials, 1st ed., Wiley, New York, NY, 2001, pp. 757–67.Google Scholar
  18. 18.
    J.W. Christian: The Theory of Transformations in Metals and Alloys, 3rd ed., Pergamon, Oxford, U.K., 2002, pp. 532–46.Google Scholar
  19. 19.
    M.J. Starink and A.M. Zahra: Thermochim. Acta, 1997, vol. 292, pp. 159–68.CrossRefGoogle Scholar
  20. 20.
    J.M. Papazian: Metall. Trans. A, 1982, vol. 13A, pp. 761–69.Google Scholar
  21. 21.
    S. Yannacopoulos, S.O. Kasap, A. Hedayat, and A. Verma: Can. Metall. Q., 1994, vol. 33, pp. 51–60.CrossRefGoogle Scholar
  22. 22.
    U. Batra and S.R. Prabhakar: Trans. Indian Inst. Met., 1995, vol. 48, pp. 55–61.Google Scholar
  23. 23.
    E.S. Tankins and W.E. Frazier: Mater. Perform., 1987, vol. 26, pp. 37–44.Google Scholar
  24. 24.
    M.J. Starink and P. Vanmourik: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1992, vol. 156, pp. 183–94.CrossRefGoogle Scholar
  25. 25.
    H.I. Aaronson and C. Laird: Trans. TMS-AIME, 1968, vol. 242, p. 1437.Google Scholar
  26. 26.
    Y.H. Chen and R.D. Doherty: Scripta Metall., 1977, vol. 11, pp. 725–29.CrossRefGoogle Scholar
  27. 27.
    J.I. Rojas, A. Aguiar, and D. Crespo: Phys. Status Solidi C, 2011, vol. 8, pp. 3111–14.CrossRefGoogle Scholar
  28. 28.
    T. Das, S. Bandyopadhyay, and S. Blairs: J. Mater. Sci., 1994, vol. 29, pp. 5680–88.CrossRefGoogle Scholar
  29. 29.
    P.M. Sutton: Phys. Rev., 1953, vol. 91, pp. 816–21.CrossRefGoogle Scholar
  30. 30.
    G.N. Kamm and G.A. Alers: J. Appl. Phys., 1964, vol. 35, pp. 327–30.CrossRefGoogle Scholar
  31. 31.
    J.A. Brammer and C.M. Percival: Exp. Mech., 1970, vol. 10, p. 245.CrossRefGoogle Scholar
  32. 32.
    Y.P. Varshni: Phys. Rev. B, 1970, vol. 2, pp. 3952–58.CrossRefGoogle Scholar
  33. 33.
    A. Wolfenden and J.M. Wolla: J. Mater. Sci., 1989, vol. 24, pp. 3205–12.CrossRefGoogle Scholar
  34. 34.
    T. Ozawa: Thermochim. Acta, 1992, vol. 203, pp. 159–65.CrossRefGoogle Scholar
  35. 35.
    R. Graf, I.J. Polmear, and G. Thomas: J. Inst. Met., 1958, vol. 86, pp. 535–38.Google Scholar
  36. 36.
    V. Hansen, K. Stiller, and G. Waterloo: Mater. Sci. Forum, 2002, vols. 396–402, pp. 815–20.CrossRefGoogle Scholar
  37. 37.
    E. Salamci: Mater. Sci. Technol., 2004, vol. 20, pp. 859–63.CrossRefGoogle Scholar
  38. 38.
    J.M. Papazian: Mater. Sci. Eng., 1986, vol. 79, pp. 97–104.CrossRefGoogle Scholar
  39. 39.
    J.M. Badia, J.M. Antoranz, and P. Tarin: Boletín Sociedad Española Cerámica Vidrio, 2004, vol. 43, pp. 224–28.CrossRefGoogle Scholar
  40. 40.
    A. Charai, T. Walther, and C. Alfonso: Acta Mater., 2000, vol. 48, pp. 2751–64.CrossRefGoogle Scholar
  41. 41.
    H.C. Shih, N.J. Ho, and J.C. Huang: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2479–94.CrossRefGoogle Scholar
  42. 42.
    E.J. Mittemeijer: J. Mater. Sci., 1992, vol. 27, pp. 3977–87.CrossRefGoogle Scholar
  43. 43.
    V. Dixit, R.S. Mishra, R.J. Lederich, and R. Talwar: Sci. Technol. Weld. Joi., 2009, vol. 14, pp. 346–55.CrossRefGoogle Scholar
  44. 44.
    E. Hersent, J.H. Driver, and D. Piot: Scripta Mater., 2010, vol. 62, pp. 455–57.CrossRefGoogle Scholar
  45. 45.
    MATLAB: The MathWorks Inc., R2010b, Natick, MA, 2010.Google Scholar
  46. 46.
    J.K. Park and A.J. Ardell: Metall. Trans. A, 1983, vol. 14A, pp. 1957–65.Google Scholar
  47. 47.
    M.M. Sharma, M.F. Amateaub, and T.J. Eden: J. Alloy. Compd., 2006, vol. 416, pp. 135–42.CrossRefGoogle Scholar
  48. 48.
    H.T. Jeong, E. Fleury, W.T. Kim, D.H. Kim, and K. Hono: J. Phys. Soc. Jpn, 2004, vol. 73, pp. 3192–97.CrossRefGoogle Scholar
  49. 49.
    Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, and F.Y. Xie: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2003, vol. 363, pp. 140–51.Google Scholar
  50. 50.
    S.K. Maloney, K. Hono, I.J. Polmear, and S.P. Ringer: Micron, 2001, vol. 32, pp. 741–47.CrossRefGoogle Scholar
  51. 51.
    M. De Sanctis: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1991, vol. 141, pp. 103–21.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Escola d’Enginyeria de Telecomunicació i Aeroespacial de Castelldefels (EETAC)Universitat Politècnica de Catalunya (UPC Barcelona Tech)Castelldefels (Barcelona)Spain

Personalised recommendations