Skip to main content
Log in

Hydrogen Embrittlement Behavior of 430 and 445NF Ferritic Stainless Steels

  • Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement behavior of two kinds of commercial ferritic stainless steels (STSs), 430 (UNS S43000) and 445NF (UNS S44536), was investigated by means of a series of cathodical hydrogen charging, slow strain rate tests, bending tests, and thermal desorption spectrometry analyses. The hydrogen concentration in 445NF STS was lower than that of 430 STS under identical hydrogen charging conditions because of the formation of a more passive layer. In addition, 445NF STS exhibited a larger passive range in the potentiodynamic polarization curve. However, resistance to hydrogen embrittlement of 445NF STS was inferior to that of 430 STS because of precipitation of the Laves phase at grain boundaries of the former at annealing temperatures of 873 K to 1123 K (600 °C to 850 °C). Crack propagation was found to occur along the interface between the Laves phase and the matrix. For 445NF STS, dissolution of the Laves phase by solution heat treatment at 1273 K (1000 °C) followed by quenching was effective in terms of suppressing degradation of its mechanical properties and formability, which were related to hydrogen embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R-Reports, 2009, vol. 65, pp. 39–104.

    Article  Google Scholar 

  2. N.R. Baddoo: J. Constr. Steel Res., 2008, vol. 64, pp. 1199–1206.

    Article  Google Scholar 

  3. Y.H. Lee, H. Lee, Y.I. Kim, and S.H. Nahm: Metall. Mater. Int., 2011, vol. 17, pp. 389–95.

    Article  CAS  Google Scholar 

  4. L. Zhang, M. Wen, M. Imade, S. Fukuyama, and K. Yokogawa: Acta Mater., 2008, vol. 56, pp. 3414–21.

    Article  CAS  Google Scholar 

  5. S. Singh and C. Altstetter: Metall. Trans. A, 1982, vol. 13A, pp. 1799–1808.

    Google Scholar 

  6. J.O. Ham, B.G. Kim, and S.H. Lee: Kor. J. Metall. Mater., 2011, vol. 49, pp. 1–8.

    Article  CAS  Google Scholar 

  7. C.L. Yu and T.P. Perng: Acta Metall. Mater., 1991, vol. 39, pp. 1091–99.

    Article  CAS  Google Scholar 

  8. M. Wang, E. Akiyama, and K. Tsuzaki: Scripta Mater., 2005, vol. 52, pp. 403–08.

    Article  CAS  Google Scholar 

  9. J. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  10. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.

    Article  CAS  Google Scholar 

  11. M. Nagumo: ISIJ Int., 2001, vol. 41, pp. 590–98.

    Article  CAS  Google Scholar 

  12. H.G. Kim, I.H. Kim, S.Y. Park, J.Y. Park, and Y.H. Jeong: Kor. J. Metall. Mater., 2010, vol. 48, pp. 717–23.

    CAS  Google Scholar 

  13. A. Szummer, E. Jezierska, and K. Lublinska: J. Alloys Compd., 1999, vol. 293, pp. 356–60.

    Article  Google Scholar 

  14. K.H. So, J.S. Kim, Y.S. Chun, K.-T. Park, Y.K. Lee, and C.S. Lee: ISIJ Int., 2009, vol. 49, pp. 1952–59.

    Article  CAS  Google Scholar 

  15. J. Lufrano and P. Sofronis: Acta Mater., 1998, vol. 46, pp. 1519–26.

    Article  CAS  Google Scholar 

  16. W.S. Ji, Y.W. Jang, and J.G. Kim: Metall. Mater. Int., 2011, vol. 17, pp. 463–70.

    Article  CAS  Google Scholar 

  17. K. Takai and R. Watanuki: ISIJ Int., 2003, vol. 43, pp. 520–26.

    Article  CAS  Google Scholar 

  18. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  19. M. Nagumo, K. Takai, and N. Okuda: J. Alloys Compd., 1999, vols. 293–295, pp. 310–16.

  20. A. Turnbull, R.B. Hutchings, and D.H. Ferriss: Mater. Sci. Eng. A, 1997, vol. 238, pp. 317–28.

    Article  Google Scholar 

  21. S. Hinotani, Y. Ohmori, and F. Terasaki: Mater. Sci. Eng., 1985, vol. 76, pp. 57–69.

    Article  CAS  Google Scholar 

  22. F.-G. Wei, T. Hara, T. Tsuchida, and K. Tsuzaki: ISIJ Int., 2003, vol. 43, pp. 539–47.

    Article  CAS  Google Scholar 

  23. F. Wei and K. Tsuzaki: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 331–53.

    Article  CAS  Google Scholar 

  24. J.L. Lee and J.Y. Lee: Metall. Trans. A, 1986, vol. 17A, pp. 2183–86.

    CAS  Google Scholar 

  25. T. Tsuchida, T. Hara, and K. Tsuzaki: Tetsu-to-Hagané, 2002, vol. 88, pp. 771–78.

    CAS  Google Scholar 

  26. G.M. Evans and E.C. Rollason: J. Iron Steel Inst., 1969, vol. 207, pp. 1591–98.

    CAS  Google Scholar 

  27. H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702–26.

    Article  CAS  Google Scholar 

  28. T.M. Adams, P. Korinko, and A. Duncan: Mater. Sci. Eng. A, 2006, vol. 424, pp. 33–39.

    Article  Google Scholar 

  29. K. Asami, K. Hashimoto, and S. Shimodaira: Corros. Sci., 1978, vol. 18, pp. 151–60.

    Article  CAS  Google Scholar 

  30. M.R. Louthan Jr. and R.G. Derrick: Metall. Trans. A, 1975, vol. 15, pp. 565–77.

    CAS  Google Scholar 

  31. M.R. Louthan Jr., G.R. Caskey Jr., J.A. Donovan, and D.E. Rawl Jr.: Mater. Sci. Eng., 1972, vol. 10, pp. 357–68.

    Article  CAS  Google Scholar 

  32. T.-P. Perng and C.J. Altstetter: Acta Metall., 1988, vol. 36, pp. 1251–60.

    Article  CAS  Google Scholar 

  33. M.R. Piggott and A.C. Siarkowski: J. Iron Steel Inst., 1972, vol. 10, pp. 901–05.

    Google Scholar 

  34. M.L. Martin, I.M. Robertson, and P. Sofronis: Acta Mater., 2011, vol. 59, pp. 3680–87.

    Article  CAS  Google Scholar 

  35. T.F. de Andrade, A.M. Kliauga, R.L. Plaut, and A.F. Padilha: Mater. Charact., 2008, vol. 59, pp. 503–07.

    Article  Google Scholar 

  36. M.P. Sello and W.E. Stumpf: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5194–5202.

    Article  Google Scholar 

  37. M.P. Sello and W.E. Stumpf: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1840–47.

    Article  Google Scholar 

  38. G.M. Sim, J.C. Ahn, S.C. Hong, K.J. Lee, and K.S. Lee: Mater. Sci. Eng. A, 2005, vol. 396, pp. 159–65.

    Article  Google Scholar 

  39. Y. Mine, K. Tachibana, and Z. Horita: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8100–05.

    Article  CAS  Google Scholar 

  40. K.I. Kim and T.W. Hong: Kor. J. Metall. Mater., 2011, vol. 49, pp. 264–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support from POSCO, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Soo Lee.

Additional information

Manuscript submitted December 22, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.M., Chun, Y.S., Won, S.Y. et al. Hydrogen Embrittlement Behavior of 430 and 445NF Ferritic Stainless Steels. Metall Mater Trans A 44, 1331–1339 (2013). https://doi.org/10.1007/s11661-012-1265-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1265-7

Keywords

Navigation