Skip to main content
Log in

Interdiffusion in the Mg-Al System and Intrinsic Diffusion in β-Mg2Al3

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96 pct) and Al (99.999 pct). Diffusion anneals were carried out at 573 K, 623 K and 673 K (300 °C, 350 °C and 400 °C) for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were used to identify the formation of the intermetallic phases, γ-Mg17Al12, and β-Mg2Al3, as well as the absence of the ε-Mg23Al30 in the diffusion couples. The thicknesses of the γ-Mg17Al12 and β-Mg2Al3 phases were measured and the parabolic growth constants were calculated to determine the activation energies for growth. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, γ-Mg17Al12, β-Mg2Al3, and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Integrated and average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the β-Mg2Al3 phase, followed by γ-Mg17Al12, Al-solid solution, and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann’s analysis (e.g., marker plane) were determined for the ~ Mg-62 at. pct Al in the β-Mg2Al3 phase. Activation energies and the pre-exponential factors for the interdiffusion and intrinsic diffusion coefficients were calculated for the temperature range examined. The β-Mg2Al3 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the β-Mg2Al3 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared with the available self-diffusion and impurity diffusion data from the literature. Thermodynamic factor, tracer diffusion coefficients, and atomic mobilities at the marker plane composition were approximated using the available literature values of Mg activity in the β-Mg2Al3 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  2. A. Luo: JOM, 2002, vol. 54, pp. 42–48.

    Article  CAS  Google Scholar 

  3. M.K. Kulekci: Int. J. Adv. Manuf. Tech., 2008, vol. 39, pp. 851–65.

    Article  Google Scholar 

  4. R. Urbance, F. Field, R. Kirchain, R. Roth, and J. Clark: JOM, 2002, vol. 54, pp. 25–33.

    Article  Google Scholar 

  5. A.K. Mondal, D. Fechner, S. Kumar, H. Dieringa, P. Maier, and K.U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2289–96.

    Article  Google Scholar 

  6. H.Z. Ye and X.Y. Liu: J. Mater. Sci., 2004, vol. 39, pp. 61, pp. 53–71.

    Google Scholar 

  7. K. Cho, T. Sano, K. Doherty, C. Yen, G. Gazonas, J. Montgomery, P. Moy, B. Davis, and R. DeLorme: Proc. 2008 Army Science Conf., 2009.

  8. S.I. Fujikawa: J. Jpn. Inst. Light Met., 1992, vol. 42, no. 12, pp. 822–25.

    Article  CAS  Google Scholar 

  9. Y. Xu, L.S. Chumbley, G.A. Weigelt, and F.C. Laabs: J. Mater. Res., 2001, vol. 16, no. 11, pp. 3287–92.

    Article  CAS  Google Scholar 

  10. X. Zhang, D. Kevorkov, and M.O. Pekguleryuz: J. Alloys Compd., 2010, vol. 501, pp. 366–70.

    Article  CAS  Google Scholar 

  11. Y. Funamizu and K. Watanabe: Trans. Jpn. Inst. Met., 1972, vol. 13, pp. 278–83.

    CAS  Google Scholar 

  12. T. Heumann and A. Kottmann: Z. Metallkd., 1953, vol. 44, p. 139.

    CAS  Google Scholar 

  13. E.M. Tanguep Njiokep, M. Salomon, and H. Mehrer: Defect Diffusion Forum, 2001, vols. 194–199, pp. 1581–86.

  14. Y. Zhong, M. Yang, and Z.K. Liu: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2005, vol. 29, pp. 303–11.

    Article  CAS  Google Scholar 

  15. J. Philibert: Atom Movements Diffusion and Mass Transport in Solid, Les Editions de Physique, France, 1991, pp. 227–29.

  16. L. Boltzmann: Wein. Ann., 1894, vol. 53, pp. 959–64.

    Google Scholar 

  17. C. Matano: Jpn. J. Phys., 1933, vol. 8, pp. 109–13.

    CAS  Google Scholar 

  18. M.A. Dayananda and C.W. Kim: Metall. Trans. A, 1979, vol. 10A, pp. 1333–39.

    CAS  Google Scholar 

  19. M.A. Dayananda: Defect Diffus. Forum, 1993, vols. 95–98, pp. 521–36.

  20. T. Heumann: Z. Phys. Chemie, 1952, vol. 201, pp. 168–89.

    CAS  Google Scholar 

  21. H. Okamoto: J. Phase Equilib., 1998, vol. 19, p. 598.

    Article  CAS  Google Scholar 

  22. C. Brubaker and Z.K. Liu: Mg. Tech., 2004, pp. 229–34.

  23. G.V. Kidson: J. Nucl. Mater., 1961, vol. 3, no 1, pp. 21–29.

    Article  CAS  Google Scholar 

  24. G.B. Gibbs: J. Nucl. Mater., 1966, vol. 20, no 1, pp. 303–06.

    Article  CAS  Google Scholar 

  25. M. Kajihara: Acta. Metall., 2004, vol. 52, pp. 1193–1200.

    CAS  Google Scholar 

  26. R. Pretorius, T.K. Marais, and C.C. Theron: Mater. Sci. Rep., 1993, vol. 10, pp. 1–83.

    Article  CAS  Google Scholar 

  27. A. Paul, A.A. Kodentsov, and F.J.J. van Loo: Intermetallics, 2006, vol. 14, pp. 1428–32.

  28. C. Wagner: Acta Metall., 1969, vol. 17, pp. 99–107.

    Article  CAS  Google Scholar 

  29. V.I. Dybkov: Reaction Diffusion and Solid State Chemical Kinetics, Trans Tech Publications, Stafa-Zurich, Switzerland, 2002.

  30. T.S. Lundy and J.F. Murdoch: J. Appl. Phys., 1962, vol. 33, pp. 1671–73.

    Article  CAS  Google Scholar 

  31. J. Combronde and G. Brebec: Acta Metall., 1971, vol. 19, pp. 1393–99.

    Article  CAS  Google Scholar 

  32. P.G. Shewmon: Trans. AIME, 1956, vol. 206, pp. 918–39.

    Google Scholar 

  33. P.G. Shewmon and F.N. Rhines: Trans. AIME, 1954, vol. 250, pp. 1021–26.

    Google Scholar 

  34. S. Fujikawa and K. Hirano: Mater. Sci. Eng., 1977, vol. 27, pp. 25–33.

    Article  CAS  Google Scholar 

  35. S. Brennan, A.P. Warren, K.R. Coffey, Y.H. Sohn, N. Kulkarni, and P. Todd: Mg. Tech., 2010, pp. 537–38.

  36. J.A. Brown and J.N. Pratt: Metall. Trans., 1970, vol. 1, pp. 2743–50.

    CAS  Google Scholar 

  37. L.S. Darken: Trans. AIME, 1948, vol. 175, pp. 184–201.

    Google Scholar 

Download references

Acknowledgments

This research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Lightweight Materials Program. The authors would also like to acknowledge the assistance of Dr. Emmanuel Perez and the staff engineers at the Materials Characterization Facility at the University of Central Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongho Sohn.

Additional information

Manuscript submitted May 24, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, S., Bermudez, K., Kulkarni, N.S. et al. Interdiffusion in the Mg-Al System and Intrinsic Diffusion in β-Mg2Al3 . Metall Mater Trans A 43, 4043–4052 (2012). https://doi.org/10.1007/s11661-012-1248-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1248-8

Keywords

Navigation