Skip to main content
Log in

Microstructural Evolution and Mechanical Properties of Short-Term Thermally Exposed 9/12Cr Heat-Resistant Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Gustafson and A. John: ISIJ Int., 2001, vol. 41, pp. 356–60.

    Article  CAS  Google Scholar 

  2. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, and R. Komine: Mater. Sci. Eng. A, 1999, vol. 267, pp. 19–25.

    Article  Google Scholar 

  3. L. Helis, Y. Toda, T. Hara, H. Miyazaki, and F. Abe: Mater. Sci. Eng. A, 2009, vols. 510–511, pp. 88–94.

    Google Scholar 

  4. K. Yamada, M. Igarashi, S. Muneki, and F. Abe: ISIJ Int., 2003, vol. 43, pp. 1438–43.

    Article  CAS  Google Scholar 

  5. Y. Kadoya, B.F. Dyson, and M. McLean: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2549–57.

    Article  CAS  Google Scholar 

  6. J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, and H. Asahi: Mater. Sci. Eng. A, 2006, vol. 428, pp. 270–75.

    Article  Google Scholar 

  7. F. Abe: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 565–69.

    Google Scholar 

  8. K. Sawada, K. Kubo, and F. Abe: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 784–87.

    Google Scholar 

  9. T. Jiang, Y. Yu, and B. Zhang: Mater. Mech. Eng., 2011, vol. 35, pp. 90–92.

    Google Scholar 

  10. W. Sha, A. Ye, S. Malinov, and E.A. Wilson: Mater. Sci. Eng. A, 2012, vol. 536, pp. 129–35.

    Article  CAS  Google Scholar 

  11. B.C. Kim, S.W. Park, and D.G. Lee: Compos. Struct., 2008, vol. 86, pp. 69–77.

    Article  Google Scholar 

  12. J. Blach, L. Falat, and P. Ševc: Eng. Fail. Anal., 2008, vol. 16, pp. 1397–1403.

    Article  Google Scholar 

  13. H. Ghassemi-Armaki, R. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi: Mater. Lett., 2009, vol. 63, pp. 2423–25.

    Article  CAS  Google Scholar 

  14. H. Cerjak, P. Hofer, and B. Schaffernak: ISIJ Int., 1999, vol. 39, pp. 874–88.

    Article  CAS  Google Scholar 

  15. J. Cui, I.S. Kim, C.Y. Kang, and K. Miyahara: ISIJ Int., 2001, vol. 41, pp. 368–71.

    Article  CAS  Google Scholar 

  16. P.V. Thomas, S. Saroja, and M. Vijayalakshmi: J. Nucl. Mater., 2008, vol. 378, pp. 273–81.

    Article  Google Scholar 

  17. Y. Tsuchida, K. Okamoto, and Y. Tokunaga: ISIJ Int., 1995, vol. 35, pp. 317–23.

    Article  CAS  Google Scholar 

  18. T. Hasegawa, Y.R. Abe, Y. Tomita, N. Maruyama, and M. Sugiyama: ISIJ Int., 2001, vol. 41, pp. 922–29.

    Article  CAS  Google Scholar 

  19. P. Fernandez, M. Hernandez-Mayoral, J. Lapena, A. Lancha, and G. De Diego: Mater. Sci. Technol., 2002, vol. 18, pp. 1353–62.

    Article  CAS  Google Scholar 

  20. J. Hald and Z. Kubon: in Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels, A. Strang and D.J. Gooch, eds., Institute of Materials, London, U.K., 1997, pp. 159–78.

  21. H. Naoi, M. Ohgami, Y. Hasegawa, H. Mimura, and T. Fujita: in Advanced Heat Resistant Steel for Power Generation, R. Viswanathan and J. Nutting, eds., Institute of Materials, London, U.K., 1999, pp. 259–69.

  22. R. Ishii, Y. Tsuda, M. Yamada, and M. Miyazaki: in Advanced Heat Resistant Steel for Power Generation, R. Viswanathan and J. Nutting, eds., Institute of Materials, London, U.K., 1999, pp. 277–87.

  23. Y. He, K. Yang, W.S. Qu, F.Y. Kong, and G.Y. Su: Mater. Lett., 2002, vol. 56, pp. 763–69.

    Article  CAS  Google Scholar 

  24. W. Sha, A. Cerezo, and G.D.W. Smith: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 1221–32.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Basic Research Program of China (No. 2008CB717802), Knowledge Innovative Program of The Chinese Academy of Sciences (No. KJCX2-YW-N35), and National High Tech Program (No. 2009GB109002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyin Shan.

Additional information

Manuscript submitted December 16, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yan, W., Sha, W. et al. Microstructural Evolution and Mechanical Properties of Short-Term Thermally Exposed 9/12Cr Heat-Resistant Steels. Metall Mater Trans A 43, 4113–4122 (2012). https://doi.org/10.1007/s11661-012-1240-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1240-3

Keywords

Navigation