Skip to main content
Log in

Structure of Cu-Sn Melt at High Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temperature-dependent viscosity and X-ray diffraction (XRD) patterns of a Cu65Sn35 melt were investigated at high temperatures. The viscosity of the melt changed discontinuously at about 1283 K (1010 °C). An XRD analysis of the Cu65Sn35 melt revealed no obvious changes in the correlation radius, whereas the coordination number increased abruptly at a similar temperature with that mentioned previously, i.e., 1283 K (1010 °C) during the cooling process. The results indicate a redistribution of atoms in the nearest environment. The structural transition at the higher temperature was attributed to a change of combination mode of nearest atoms in the short-range order cluster of the Cu65Sn35 melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Tsuchiya: J. Non-Cryst. Solids, 1991, vol. 136, nos. 1–2, pp. 37–42.

    Article  CAS  Google Scholar 

  2. F.Q. Zu, Z.G. Zhu, L.J. Guo, B. Zhang, J.P. Shui, and C.S. Liu: Phys. Rev. B., 2001, vol. 64, pp. 180203–06(R).

    Article  Google Scholar 

  3. F.Q. Zu, B. Zhang, Y. Feng, and J.P. Shui: J. Phys.: Condens. Matter., 2001, vol. 13, pp. 11435–442.

    Article  CAS  Google Scholar 

  4. F.Q. Zu, Z.G. Zhu, L.J Guo, and X.B Qin: Phys. Rev. Lett., 2002, vol. 89, pp. 125505–508.

    Article  Google Scholar 

  5. Z.G. Zhu, F.Q. Zu, L.J. Guo, and B. Zhang: Mater. Sci. Eng. A, 2004, vol. A370, pp. 427–30.

    CAS  Google Scholar 

  6. J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudière, and D. Zanghi: J. Non-Cryst. Solids, 2006, vol. 352, nos. 38–39, pp. 4008–12.

    Article  CAS  Google Scholar 

  7. R. Novakovic, D. Giuranno, E. Ricci, A. Tuissi, R. Wunderlich, H.-J. Fecht, and I. Egryal: Appl. Surf. Sci., 2012, vol. 258, no. 7, pp. 3269–75.

    Article  CAS  Google Scholar 

  8. V. V. Hoang: Phys. Lett. A., 2005, vol. 335, nos. 5–6, pp. 439–43.

    Article  CAS  Google Scholar 

  9. A.Kakinuma, T. Fukunaga, M. Misawa, and K. Suzuki: J. Non-Cryst. Solids, 1992, vol. 150, nos. 1–3, pp. 53–57.

    Article  CAS  Google Scholar 

  10. A.G. Vorontsov, A.A. Mirzoev, and B.R.G. Russ: J. Phys. Chem., 2003, vol. 77, no. 11, pp. 1800–03.

    Google Scholar 

  11. X.F. Li, F.Q. Zu, H.F. Ding, J. Yu, L.J. Liu, and Y. Xi: Phys. Lett. A, 2006, vol. 354, no. 4, pp. 325–29.

    Article  CAS  Google Scholar 

  12. Z.X. Yang, H.R. Geng, Z.D. Tao, and C.J. Sun: J. Atom. Mol. Phys., 2004, vol. 21, no. 4, pp. 663–66.

    CAS  Google Scholar 

  13. S. Nishimura, S. Matsumoto, K. Terashima: J. Cryst. Growth, 2002, vols. 237–239, no. 3, pp. 1667–70.

    Article  Google Scholar 

  14. J.X. Hou, J.J. Sun, C.W. Zhan, X.L. Tian, and X.C. Chen: Sci. China Ser. G: Phys., Mech. Astron., 2007, vol. 50, no. 3, pp. 1–7.

    Google Scholar 

  15. Y.Q Wang, Y.Q Wu, and X.F Bian: Chinese Phys. Lett., 2007, vol. 24, pp. 2028–31.

    Article  CAS  Google Scholar 

  16. S. Gruner, J. Marczinke, W. Hoyer. J. Non-Cryst. Solids., 2009, vol. 355, nos. 14–15, pp. 880–84.

    Article  CAS  Google Scholar 

  17. H. Richter and G. Breitling: Z. Metallic.., 1970, vol. 61, no. 9, pp. 628–36.

    CAS  Google Scholar 

  18. A.C. Mitus, A.Z. Patashinkii, and B.I. Shumilo: Phys. Lett. A, 1985, vol. 113, pp. 41–44.

    Article  Google Scholar 

  19. D. Adhikari, I.S. Jha, and B.P. Singh: Phys. B, 2010, vol. 405, no. 7, pp. 1861–65.

    Article  CAS  Google Scholar 

  20. F.Q. Zu, X.F. Li, L.J. Guo, H. Yang, X.B. Qin, and Z.G. Zhu: Phys. Lett. A, 2004, vol. 324, pp. 472–78.

    Article  CAS  Google Scholar 

  21. G. Brian Moore and A. Afraa Al-Quraishi: Chem. Phys., 2000, vol. 252, no. 3, pp. 337–47.

    Article  Google Scholar 

  22. J. D. Bernal: Nature, 1959, vol. 183, pp. 141–47.

    Article  CAS  Google Scholar 

  23. J. D. Bernal: Nature, 1960, vol. 185, pp. 68–70.

    Article  Google Scholar 

  24. L.C. Prasad, S.K. Chatterjee, and R.K. Jha: J. Alloys Compd., 2007, vol. 441, pp. 43–51.

    Article  CAS  Google Scholar 

  25. S.J Cheng: Ph.D. Dissertation, Shandong University, Jinan, China, 2004.

  26. Y. Waseda: The Structure of Non-Crystalline Materials, McGraw-Hill Inc., New York, NY, 1980.

    Google Scholar 

  27. M. Shimoji: Liquid Metals, Academic Press, New York, NY, 1977.

    Google Scholar 

Download references

Acknowledgments

X.L. Tian is supported by the National Natural Science Foundation of China Grants 50971083 and 50571052. J.X. Hou acknowledges the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (2010-0028287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Tian.

Additional information

Manuscript submitted May 30, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, J.X., Zhan, C.W., Tian, X.L. et al. Structure of Cu-Sn Melt at High Temperature. Metall Mater Trans A 43, 4023–4027 (2012). https://doi.org/10.1007/s11661-012-1236-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1236-z

Keywords

Navigation