Skip to main content
Log in

Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Plane-strain compression testing was carried out on a Nb-Ti-V microalloyed steel, in a GLEEBLE3500 simulator using a different amount of roughing, intermediate, and finishing deformation over the temperature range of 1373 K to 1073 K (1100 °C to 800 °C). A decrease in soaking temperature from 1473 K to 1273 K (1200 °C to 1000 °C) offered marginal refinement in the ferrite (α) grain size from 7.8 to 6.6 μm. Heavy deformation using multiple passes between A e3 and A r3 with true strain of 0.8 to 1.2 effectively refined the α grain size (4.1 to 3.2 μm) close to the ultrafine size by dynamic-strain-induced austenite (γ) → ferrite (α) transformation (DSIT). The intensities of microstructural banding, pearlite fraction in the microstructure (13 pct), and fraction of the harmful “cube” texture component (5 pct) were reduced with the increase in finishing deformation. Simultaneously, the fractions of high-angle (>15 deg misorientation) boundaries (75 to 80 pct), beneficial gamma-fiber (ND//〈111〉) texture components, along with {332}〈133〉 and {554}〈225〉 components were increased. Grain refinement and the formation of small Fe3C particles (50- to 600-nm size) increased the hardness of the deformed samples (184 to 192 HV). For the same deformation temperature [1103 K (830 °C)], the difference in α-grain sizes obtained after single-pass (2.7 μm) and multipass compression (3.2 μm) can be explained in view of the static- and dynamic-strain-induced γα transformation, strain partitioning between γ and α, dynamic recovery and dynamic recrystallization of the deformed α, and α-grain growth during interpass intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. GLEEBLE is a trademark of Dynamic Systems Inc., Poestenkill, NY.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  3. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, Book 615, pp. 80–15.

  2. F. Siciliano and J.J. Jonas: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 511–30.

    Article  CAS  Google Scholar 

  3. H. Beladi, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 450–63.

    Article  CAS  Google Scholar 

  4. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  5. R. Priestner and A.K. Ibraheem: Mater. Sci. Technol., 2000, vol. 16, pp. 1267–72.

    Article  CAS  Google Scholar 

  6. P.D. Hodgson, M.R. Hickson, and R.K. Gibbs: Scripta Mater., 1999, vol. 40, pp. 1179–84.

    Article  CAS  Google Scholar 

  7. T. Morimoto, I. Chikushi, R. Kurahashi, and J. Yanagimoto: Proc. Int. Conf. on Thermomechanical Processing of Steels, Stahleisen Verlag GmbH, Dusseldorf, Germany, 2004, pp. 415–22.

    Google Scholar 

  8. M. Miyata, W. Wakita, F. Fukushima, M. Eto, T. Sasaki, and T. Tomida: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4698–03.

  9. R. Barbosa, D.B. Santos, and R.E. Lino: Mater. Sci. Forum, 2007, vols. 558–559, pp. 471–75.

  10. H. Dong and X. Sun: Curr. Opin. Solid State Mater. Sci., 2005, vol. 9, pp. 269–76.

    Article  CAS  Google Scholar 

  11. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, p. 197–206.

    Article  CAS  Google Scholar 

  12. D. Chakrabarti, M. Strangwood, and C.L. Davis: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 780–95.

    Article  CAS  Google Scholar 

  13. S.J. Wu and C.L. Davis: J. Microsc., 2004, vol. 213, pp. 262–72.

    Article  CAS  Google Scholar 

  14. S. Patra, S. Roy, Vinod Kumar, A. Haldar, and D. Chakrabarti: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2575–90.

  15. R.K. Ray, J.J. Jonas, M.P. Butron-Guillen, and J. Savoie: ISIJ Int., 1994, vol. 34, pp. 927–42.

    Article  CAS  Google Scholar 

  16. R.K. Ray, M.P. Butron-Guillen, J.J. Jonas, and G.E. Ruddle: ISIJ Int., 1992, vol. 32, pp. 203–12.

    Article  Google Scholar 

  17. V. Randle: Text. Microstr., 1993, vol. 20, pp. 231–42.

    Article  Google Scholar 

  18. S.C. Hong and K.S. Lee: Mater. Sci. Eng., 2002, vol. A323, pp. 148–59.

    CAS  Google Scholar 

  19. D.Q. Bai, S. Yue, W.P. Sun, and J.J. Jonas: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 2151–59.

    CAS  Google Scholar 

  20. S. Lee, D. Kwon, Y.K. Lee, and O. Kwon: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1093–1100.

    Article  CAS  Google Scholar 

  21. B. Eghbali: Mater. Charact., 2008, vol. 59, pp. 473–78.

    Article  CAS  Google Scholar 

  22. Z.Q. Sun, W.Y. Yang, J.J. Qi, and A.M. Hu: Mater. Sci. Eng. A, 2002, vol. 334, pp. 201–06.

    Article  Google Scholar 

  23. B. Eghbali and M. Shaban: J. Iron Steel Res. Int., 2011, vol. 18, pp. 41–46.

    Article  CAS  Google Scholar 

  24. J.L. Ferrieira, T.M.F. de Melo, I. de S. Bott, D.B. Santos, and P.R. Rios: ISIJ Int., 2007, vol. 47, pp. 1638–46.

  25. G.L. Kelly, H. Beladi, and P.D. Hodgson: ISIJ Int., 2003, vol. 12, pp. 1585–90.

    Google Scholar 

  26. A. Shokouhi and P.D. Hodgson: Mater. Sci. Technol., 2007, vol. 23, pp. 1233–42.

    Article  CAS  Google Scholar 

  27. T. Tomida, N. Imai, K. Miyata, S. Fukushima, M. Yoshida, M. Wakita, M. Etou, T. Sasaki, Y. Haraguchi, and Y. Okada: ISIJ Int., 2008, vol. 48, pp. 1148–57.

    Article  CAS  Google Scholar 

  28. W.R. Calado and R.A.N.M. Barbosa: ISIJ Int., 2010, vol. 50, pp. 1471–75.

    Article  CAS  Google Scholar 

  29. S.V.S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Scripta Mater., 2005, vol. 53, pp. 763–68.

  30. D. Chakrabarti, C.L. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.

    Article  CAS  Google Scholar 

  31. D. Chakrabarti, C.L. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1963–77.

    Article  CAS  Google Scholar 

  32. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 277–86.

    Article  CAS  Google Scholar 

  33. L.J. Cuddy and J.C. Raley: Metall. Trans. A, 1983, vol. 14A, pp. 1989–95.

    CAS  Google Scholar 

  34. F. Boratto, R. Barbosa, S. Yue, and J.J. Jonas: Proc. Iron and Steel Institute of Japan, Tokyo, Thermec 88, 1988, pp. 383–90.

  35. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209.

    Article  CAS  Google Scholar 

  36. T. Sakai, M. Ohashi, K. Chiba, and J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 1781–90.

    Article  CAS  Google Scholar 

  37. A.I. Fernandez, P. Uranga, B. Lopez, and J.M. Rodriguez Ibabe: Mater. Sci. Eng. A, 2003, vol. 361A, pp. 367–76.

  38. H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Mater. Sci. Eng. A, 2004, vol. 367, pp. 152–61.

    Article  Google Scholar 

  39. J.K. Choi, D.H. Seo, J.S. Lee, K.K. Um, and W.Y. Choo: ISIJ Int., 2003, vol. 43, pp. 746–54.

    Article  CAS  Google Scholar 

  40. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36.

    Article  CAS  Google Scholar 

  41. S.C. Hong, S.H. Lim, H.S. Hong, K.J. Lee, D.H. Shin, and K.S. Lee: Mater. Sci. Eng. A, 2003, vol. 355, pp. 241–48.

    Article  Google Scholar 

  42. J.D. Verhoeven: J. Mater. Eng. Perform., 2000, vol. 9, pp. 286–96.

    Article  CAS  Google Scholar 

  43. G. Krauss: Metall. Mater. Trans. B, 2002, vol. 34B, pp. 781–92.

    Google Scholar 

  44. Eric A. Jägle: Master’s Thesis, The University of Cambridge, Cambridge, United Kingdom, 2007, pp. 13–23.

  45. M. Militzer and Y. Brechet: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2273–82.

    Article  CAS  Google Scholar 

  46. C.M. Sellars and J.H. Beynon: Proc. Conf. on HSLA Steels, D.P. Dunne and T. Chandra, eds., South Coast Printers, Port Kembla, Australia, 1985, pp. 142–50.

  47. T. Furuhara, K. Kikumoto, H. Saito, T. Sekina, T. Ogawa, S. Morito, and T. Maki: ISIJ Int., 2008, vol. 48, pp. 1038–45.

    Article  CAS  Google Scholar 

  48. J. Majta, A.K. Zurek, M. Cola, P. Hochanadel, and M. Pietrzyk: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1509–20.

    Article  CAS  Google Scholar 

  49. P.D. Hodgson, A. Shokouhi, and H. Beladi: ISIJ Int., 2008, vol. 48, pp. 1046–49.

    Article  CAS  Google Scholar 

  50. A. Najafi-Zadeh, J.J. Jonas, and S. Yue: Metall. Trans. A, 1992, vol. 23A, pp. 2607–18.

    CAS  Google Scholar 

  51. M.R. Barnett, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1893–1900.

    Article  CAS  Google Scholar 

  52. H. Mabuchi, T. Hasagawa, and T. Ishikawa: ISIJ Int., 1999, vol. 39, pp. 477–85.

    Article  CAS  Google Scholar 

  53. G. Glover and C.M. Sellars: Metall. Trans., 1973, vol. 4, pp. 765–75.

    Article  CAS  Google Scholar 

  54. B. Mintz, J. Lewis, and J.J. Jonas: Mater. Sci. Technol., 1997, vol. 13, pp. 379–88.

    Article  CAS  Google Scholar 

  55. K. Mukherjee, S.S. Hazra, and M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2145–59.

    Article  CAS  Google Scholar 

  56. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks to the Department of Science and Technology (DST, New Delhi), the Research and Development Division (R&D) of Tata Steel for the provision of research funding, and RDCIS, SAIL (Ranchi) for providing the research material and offering the GLEEBLE testing facility. The authors acknowledge the help of the faculty and staff members from the Department of Metallurgical and Materials Engineering, Steel Technology Centre (STC), and the Central Research Facility (CRF), I.I.T. Kharagpur. Drs. G.K. Dey and D. Srivastiava, Materials Science Division of BARC (Mumbai, India), deserve special mention for their support behind the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chakrabarti.

Additional information

Manuscript submitted June 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, S., Neogy, S., Kumar, V. et al. Refinement of Ferrite Grain Size near the Ultrafine Range by Multipass, Thermomechanical Compression. Metall Mater Trans A 43, 4296–4310 (2012). https://doi.org/10.1007/s11661-012-1213-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1213-6

Keywords

Navigation