Skip to main content
Log in

Analysis of Phase Distribution in Thin Surface Layers Comparable to the Penetration Depth of X-Rays

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

After hydrogen concentration, gradients in austenitic-type stainless steels, formed during electrochemical charging and followed by hydrogen loss during aging at room temperature, surface stresses, and martensitic phases α′-bcc and ε-hcp, developed. Phase quantitative X-ray surface analysis of distributions of martensitic phases in a thin layer, comparable to the penetration depth of X-rays, based on diffraction data taken for various diffraction reflections (2θ, Bragg’s angles) and with various radiations (λ-wavelengths) was applied for various degrees of the type steel in the surface layers. An examination of the relationships between γ-phase transitions in a number of stainless steels and their γ stability revealed that the stability of the γ phase increased (S stability factor changed from 26.5 in AISI 321 to 44 in AISI 310), the amount of α′-martensites (from 25 pct in AISI 347 to 0 pct in AISI 310) decreased, and ε-martensites (from 48 pct in AISI 310 to 77 pct in AISI 321) increased, while the depth (from 6.2 μm in AISI 321 to 3 μm in AISI 310) of the martensitic phases decreased. Deformation and fracture experiments were carried out at room temperature in a high-resolution transmission electron microscope with single-axis tilt tensile stage and environmental cell. The principal effect of hydrogen was to decrease the stress required for dislocation motion, for phase transformation of the austenite, and for crack propagation. Formation of ε- and α′-martensite was noted along the fracture surfaces and in front of the crack tip. The cracks propagated through the ε-martensite plates, which formed along the active slip planes, while α′ phase was always found in the high stress regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. M. Holzwort and M. Louthan Jr.: Corrosion, 1968, vol. 24, pp. 110–24.

    Google Scholar 

  2. H. Okada, Y. Hosoi, and S. Abe: Corrosion, 1970, vol. 26, pp. 183–89.

    CAS  Google Scholar 

  3. M. Rigsbee: Metallography, 1978, vol. 11, pp. 493–98.

    Article  CAS  Google Scholar 

  4. A. Inoue, T. Hosoya, and T. Masumoto: Trans. Iron Steel Inst., 1979, vol. 19, pp. 170–79.

    CAS  Google Scholar 

  5. H. Hanninen and T. Hakarainen: Corrosion, 1980, vol. 36, pp. 47–51.

    CAS  Google Scholar 

  6. H. Mathias, Y. Katz, and S. Nadiv: Mater. Sci., 1978, vol. 12, pp. 129–37.

    CAS  Google Scholar 

  7. N. Narita, C.J. Altstetter, and H.K. Birnbaum: Metall. Trans. A, 1982, vol. 13A, pp. 1355–64.

    Google Scholar 

  8. A. Szummer and A. Janko: Corrosion, 1979, vol. 35, pp. 461–66.

    CAS  Google Scholar 

  9. Q. Yang and L.J. Luo: Mater. Sci. Eng. A, 2000, vol. 288, pp. 75–83.

    Article  Google Scholar 

  10. L.S. Zevin, P. Rozenak, and D. Eliezer: J. Appl. Cryst., 1984, vol. 18, pp. 267–71.

    Article  Google Scholar 

  11. P. Rozenak and R. Bergman: Mater. Sci. Eng. A, 2006, vol. 437(2), pp. 336–78.

    Google Scholar 

  12. P. Rozenak and D. Eliezer: Mater. Sci. Eng., 1984, vol. 67, pp. L1–L4.

    Article  CAS  Google Scholar 

  13. P. Rozenak and D. Eliezer: J. Mater. Sci., 1984, vol. 19, pp. 3873–79.

    Article  CAS  Google Scholar 

  14. P. Rozenak and D. Eliezer: Acta Metall., 1987, vol. 35(9), pp. 2329–40.

    Article  CAS  Google Scholar 

  15. D.G. Ulmert and C.J. Altsetetter: Acta Metall. Mater., 1993, vol. 41, pp. 2235–41.

    Article  Google Scholar 

  16. A.P. Bentley and G.C. Smith: Metall. Trans. A, 1986, vol. 17A, pp. 1593–1600.

    CAS  Google Scholar 

  17. M. Hoezel, S.A. Danilkin, H. Ehrenberg, D.M. Toebbens, T.J. Udovic, H. Fuess, and H. Wipf: Mater. Sci. Eng. A, 2004, vol. 384, pp. 255–61.

    Google Scholar 

  18. M. Hoelzel, V. Rajevac, S.A. Danilkin, T.J. Udovic, H. Wipf, and H. Fuess: J. Phys.: Condens. Mater., 2005, vol. 17, pp. 3537–46.

  19. P. Rozenak and D. Eliezer: Metall. Trans. A, 1988, vol. 19A, pp. 723–30.

    CAS  Google Scholar 

  20. Elements of X-Ray Diffraction, 2nd ed., B.D. Cullity and M. Cohen, eds., Addison-Wesley Publishing Company, Inc., Boston, MA, 1978.

  21. G.H. Eichelman and F.C. Hull: Trans. Am. Soc. Met., 1953, vol. 45, pp. 77–85.

    Google Scholar 

  22. S. Floreen and J.R. Mihalisim: ASTM Spec. Technol. Pub., 1965, vol. 369, pp. 17–21.

    Google Scholar 

  23. A. Atrens, J.J. Bellina, N.J. Fiore, and R. Coye: in The Metal Science of Stainless Steels, E. Collings and H. King, eds., American Institute of Engineers, New York, NY, 1979, pp. 54–69.

  24. A. Kummick and H.H. Johnson: Metall. Trans., 1975, vol. 61, pp. 169–76.

    Google Scholar 

  25. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solid, Clarendon Press, Oxford, United Kingdom, 1959.

  26. A.N. Tikhonow and A.A. Samarskii: Equations of Mathematical Physics, Pergamon Press, New York, NY, 1963.

    Google Scholar 

  27. P. Rozenak, I.M. Robertson, and H.K. Birnbaum: Acta Metall. Mater., 1990, vol. 38 (11), pp. 2031–40.

    Article  CAS  Google Scholar 

  28. H.G. Wilsdorf: Acta Metall., 1982, vol. 30, pp. 1247–56.

    Article  CAS  Google Scholar 

  29. R.L. Lyles Jr. and H.G. Wilsdorf: Acta Metall., 1975, vol. 23, pp. 269–76.

    Article  CAS  Google Scholar 

  30. P. Rozenak, L. Zevin, and D. Eliezer: J. Mater. Sci. Lett., 1982, vol. 2, pp. 63–66.

    Article  Google Scholar 

  31. P. Rozenak: J. Mater. Sci., 1990, vol. 9, pp. 627–29.

    CAS  Google Scholar 

  32. P. Rozenak: Mater. Sci. Eng., 1990, vol. A128, pp. 91–97.

    CAS  Google Scholar 

  33. A.E. Pontini and J.D. Hermida: Scripta Mater., 1997, vol. 37(11), pp. 1831–37.

    Article  CAS  Google Scholar 

  34. D. Hargie and D. Dong: Br. Corros. J., 1994, vol., 29(2), pp. 156–60.

    Article  Google Scholar 

  35. D.N. Monchan, V.N. Slyvanyuk, B.D. Shanina, and V.G. Gavriljuk: Phys. Status Solidi, 2010, vol. A 207(8), pp. 1796–1801.

    Google Scholar 

  36. P. Rozenak and D. Eliezer: Mater. Sci. Eng., 1983, vol. 61, pp. 31–41.

    Article  CAS  Google Scholar 

  37. P. Rozenak and A. Loew: Corros. Sci., 2008, vol. 50, pp. 3021–30.

    Article  CAS  Google Scholar 

  38. N. Tsukuda and T. Arai: Proc. Jpn. Acad., 1993, vol. 69, Ser. B, pp. 41–47.

  39. Q. Yang and J.L. Luo: Mater. Sci. Eng., 2000, vol. A288, pp. 75–80.

    CAS  Google Scholar 

  40. M. Tanino, H. Komatsu, and S. Funaki: J. Phys., 1982, Coll. C4, Suppl. 12, Tome 43, pp. C4 503–C4 509.

  41. Y. Hosoya, A. Inoue, and T. Masumoto: Iron Steel Inst. Jpn., 1978, pp. 769–78.

  42. H. Hanninen and T. Hakarainen: Corrosion, 1976, vol. 36, pp. 47–52.

    Google Scholar 

  43. S.P. Hannula, H. Hanninen, and S. Tahtinen: Metall. Trans. A, 1984, vol. 15A, pp. 2205–11.

    CAS  Google Scholar 

  44. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng., 1994, vol. A176, pp. 191–202.

    Google Scholar 

Download references

Acknowledgments

The authors would like thanks to Argon National Lab. at Chicago, USA; for permitting the use of their HRTEM with environmental cell facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rozenak.

Additional information

Manuscript submitted April 9, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozenak, P., Shani, E. Analysis of Phase Distribution in Thin Surface Layers Comparable to the Penetration Depth of X-Rays. Metall Mater Trans A 43, 4028–4042 (2012). https://doi.org/10.1007/s11661-012-1203-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1203-8

Keywords

Navigation