Skip to main content

Advertisement

Log in

Creep and Fracture Behavior of Peak-Aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The tensile-creep and creep-fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) was investigated at temperatures between 523 K (250 °C) to 598 K (325 °C) (0.58 to 0.66T m) and stresses between 30 MPa to 140 MPa. The minimum creep rate of the alloy was almost two orders of magnitude lower than that for WE54-T6 and was similar to that for HZ32-T5. The creep behavior exhibited an extended tertiary creep stage, which was believed to be associated with precipitate coarsening. The creep stress exponent value was 4.5, suggesting that dislocation creep was the rate-controlling mechanism during secondary creep. At T = 573 K (300 °C), basal slip was the dominant deformation mode. The activation energy for creep (Q avg = 221 ± 20 kJ/mol) was higher than that for self-diffusion in magnesium and was believed to be associated with the presence of second-phase particles as well as the activation of nonbasal slip and cross slip. This finding was consistent with the slip-trace analysis and surface deformation observations, which revealed that the nonbasal slip was active. The minimum creep rate and time-to-fracture followed the original and modified Monkman-Grant relationships. The microcracks and cavities nucleated preferentially at grain boundaries and at the interface between the matrix phase and the second phase. In-situ creep experiments highlighted the intergranular cracking evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.L. Mordike and K.U. Kainer: Magnesium Alloys and Their Applications, Wiley, New York, NY, 2000, p. 816.

    Google Scholar 

  2. A. Luo and M.O. Pekguleryuz: J. Mater. Sci., 1994, vol. 29, pp. 5259–71.

    Article  CAS  Google Scholar 

  3. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  4. A.A. Luo: Int. Mater. Rev., 2004, vol. 49, pp. 13–30.

    Article  CAS  Google Scholar 

  5. S. Zhu, J. Nie, and B. Mordike: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1221–29.

    Article  CAS  Google Scholar 

  6. B.L. Mordike: Mater. Sci. Eng. A, 2002, vol. 324, pp. 103–12.

    Article  Google Scholar 

  7. M. Pekguleryuz and M. Celikin: Int. Mater. Rev., 2010, vol. 55, pp. 197–217.

    Article  CAS  Google Scholar 

  8. Y. Gao, Q.D. Wang, J.H. Gu, Y. Zhao, Y. Tong, and D.D. Yin: J. Alloy. Compd., 2009, vol. 477, pp. 374–78.

    Article  CAS  Google Scholar 

  9. D.D. Yin, Q.D. Wang, Y. Gao, C.J. Chen, and J. Zheng: J. Alloy. Compd., 2011, vol. 509, pp. 1696–704.

    Article  CAS  Google Scholar 

  10. K. Okamoto, M. Sasaki, N. Takahashi, Q.D. Wang, Y. Gao, D.D. Yin, and C.J. Chen: Magnesium Technology, Wiley, New York, NY, 2011.

    Google Scholar 

  11. C.J. Chen, Q.D. Wang, and D.D. Yin: J. Alloy. Compd., 2009, vol. 487, pp. 560–63.

    Article  CAS  Google Scholar 

  12. C.J. Boehlert, C.J. Cowen, S. Tamirisakandala, D.J. McEldowney, and D.B. Miracle: Scripta Mater., 2006, vol. 55, pp. 465–68.

    Article  CAS  Google Scholar 

  13. J.P. Quast and C.J. Boehlert: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 529–36.

    Article  CAS  Google Scholar 

  14. M. Barnett: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1799–806.

    Article  CAS  Google Scholar 

  15. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: Acta Mater., 2003, vol. 51, pp. 2055–65.

    Article  CAS  Google Scholar 

  16. Z. Keshavarz and M.R. Barnett: Scripta Mater., 2006, vol. 55, pp. 915–18.

    Article  CAS  Google Scholar 

  17. C.J. Boehlert, H. Li, L. Wang, and B. Bartha: Adv. Mater. Process., 2010, vol. 168, pp. 41–45.

    CAS  Google Scholar 

  18. B. Wilshire and H. Burt: Int. J. Pres. Ves. Pip., 2008, vol. 85, pp. 47–54.

    Article  CAS  Google Scholar 

  19. B.F. Dyson and T.B. Gibbons: Acta Mater., 1987, vol. 35, pp. 2355–69.

    Article  CAS  Google Scholar 

  20. W. Blum, Y. Li, X. Zeng, P. Zhang, B. von Großmann, and C. Haberling: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1721–28.

  21. J.F. King: Magnesium Alloys and Their Applications, Wiley, New York, NY, 2000, pp. 14–22.

    Google Scholar 

  22. B.L. Mordike, I. Stulíková, and B. Smola: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1729–36.

    Article  CAS  Google Scholar 

  23. D.P. Miannay: Time-Dependent Fracture Mechanics, Springer, New York, NY, 2001, p. 313.

    Book  Google Scholar 

  24. G. Sundararajan: Mater. Sci. Eng. A, 1989, vol. 112, pp. 205–14.

    Article  Google Scholar 

  25. F. Povolo: J. Mater. Sci., 1985, vol. 20, pp. 2005–10.

    Article  Google Scholar 

  26. F.C. Monkman and N.J. Grant: Proc. ASTM., 1956, vol. 56, pp. 593–620.

    Google Scholar 

  27. F. Dobes and K. Milicka: Met. Sci., 1976, vol. 10, pp. 382–84.

    CAS  Google Scholar 

  28. Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater., 2010, vol. 58, pp. 2936–47.

    Article  CAS  Google Scholar 

  29. J.F. Nie and B. Muddle: Acta Mater., 2000, vol. 48, pp. 1691–1703.

    Article  CAS  Google Scholar 

  30. T. Honma, T. Ohkubo, S. Kamado, and K. Hono: Acta Mater., 2007, vol. 55, pp. 4137–50.

    Article  CAS  Google Scholar 

  31. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: J. Alloy. Compd, 2006, vol. 421, pp. 309–13.

    Article  CAS  Google Scholar 

  32. M.E. Kassner and M.T. Perez-Prado: Progr. Mater. Sci., 2000, vol. 45, pp. 1–102.

    Article  CAS  Google Scholar 

  33. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, New York, NY, 1986, p. 751.

  34. B.F. Dyson and M. McLean: Acta Mater., 1983, vol. 31, pp. 17–27.

    Article  CAS  Google Scholar 

  35. K.R. Williams and B. Wilshire: Mater. Sci. Eng., 1977, vol. 28, pp. 289–96.

    Article  CAS  Google Scholar 

  36. P. Zhang, B. Watzinger, and W. Blum: Phys. Status Solidi. A, 1999, vol. 175, pp. 481–89.

    Article  CAS  Google Scholar 

  37. R.A. Stevens and P.E.J. Flewitt: Acta Mater., 1981, vol. 29, pp. 867–82.

    Article  CAS  Google Scholar 

  38. S.S. Vagarali and T.G. Langdon: Acta Mater., 1981, vol. 29, pp. 1969–82.

    Article  CAS  Google Scholar 

  39. S.S. Vagarali and T.G. Langdon: Acta Mater., 1982, vol. 30, pp. 1157–70.

    Article  CAS  Google Scholar 

  40. R.B. Jones and J.E. Harris: ARCHIVE: Proc. of the Institution of Mechanical Engineers, 1964–1970, vols. 178–184, 1963, vol. 178, pp. 1–8.

  41. M. Regev, E. Aghion, S. Berger, M. Bamberger, and A. Rosen: Mater. Sci. Eng. A, 1998, vol. 257, pp. 349–52.

    Article  Google Scholar 

  42. P. Zhao, Q. Wang, C. Zhai, and Y. Zhu: Mater. Sci. Eng. A, 2007, vol. 444, pp. 318–26.

    Article  Google Scholar 

  43. Z. Chen, J. Huang, R.F. Decker, S.E. Lebeau, L.R. Walker, O.B. Cavin, T.R. Watkins, and C.J. Boehlert: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1386–99.

    Article  Google Scholar 

  44. C.J. Boehlert and K. Knittel: Mater. Sci. Eng. A, 2006, vol. 417, pp. 315–21.

    Article  Google Scholar 

  45. C.J. Boehlert: J. Mater. Sci., 2007, vol. 42, pp. 3675–84.

    Article  CAS  Google Scholar 

  46. J. Zheng, Q.D. Wang, Z.L. Jin, and T. Peng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4605–12.

    Article  Google Scholar 

  47. J. Zheng, Q.D. Wang, Z.L. Jin, and T. Peng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1677–85.

    Article  Google Scholar 

  48. J. Zheng, Q.D. Wang, Z.L. Jin, and T. Peng: J. Alloy. Compd., 2010, vol. 496, pp. 351–56.

    Article  CAS  Google Scholar 

  49. Q.D. Wang, D.Q. Li, J.J. Blandin, and M. Suery: Mater. Sci. Eng. A, 2009, vol. 516, pp. 189–92.

    Article  Google Scholar 

  50. J.G. Wang, L.M. Hsiung, T.G. Nieh, and M. Mabuchi: Mater. Sci. Eng. A, 2001, vol. 315, pp. 81–88.

    Article  Google Scholar 

  51. M.F. Ashby and H.J. Frost: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, U.K., 1982, p. 166.

    Google Scholar 

  52. M. Suzuki, H. Sato, K. Maruyama, and H. Oikawa: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 751–55.

  53. J. Cadek: Creep in Metallic Materials, Elsevier, Amsterdam, The Netherlands, 1988.

    Google Scholar 

  54. A.M. Jansen and D.C. Dunand: Acta Mater., 1997, vol. 45, pp. 4583–92.

    Article  CAS  Google Scholar 

  55. D.C. Dunand and A.M. Jansen: Acta Mater., 1997, vol. 45, pp. 4569–81.

    Article  CAS  Google Scholar 

  56. M.F. Ashby and B.F. Dyson: Advances in Fracture Research, vol. 1, R.S. Valluri, ed., Pergamon Press, Oxford, U.K., 1984, pp. 3–30.

  57. E. Aghion, B. Bronfin, F. Von Buch, S. Schumann, and H. Friedrich: JOM, 2003, vol. 55, pp. A30–A33.

  58. D.C. Dunand, B.Q. Han, and A.M. Jansen: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 829–38.

    CAS  Google Scholar 

  59. F. Hnilica, V. Janik, B. Smola, I. Stulikova, and V. Ocenasek: Mater. Sci. Eng. A, 2008, vol. 489, pp. 93–98.

    Article  Google Scholar 

  60. M.E. Kassner and T.A. Hayes: Int. J. Plastic., 2003, vol. 19, pp. 1715–48.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51074106 and No. 50971089), the Key Hi-Tech Research and Development Program of China (2009AA033501), the National Key Technology R & D Program of China (2011BAE22B01-5), and the International Cooperation Fund of Shanghai Science and Technology Committee, Shanghai/Rhone-Alpes Science and Technology cooperation fund (No. 06SR07104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. D. Wang.

Additional information

Manuscript submitted July 12, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, D.D., Wang, Q.D., Boehlert, C.J. et al. Creep and Fracture Behavior of Peak-Aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct). Metall Mater Trans A 43, 3338–3350 (2012). https://doi.org/10.1007/s11661-012-1131-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1131-7

Keywords

Navigation