Skip to main content
Log in

Investigation of Wear Anisotropy in a Severely Deformed Al-Al3Ti Composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current investigation, Al-Al3Ti composite was processed by equal channel angular pressing (ECAP). ECAP was carried out using routes A and BC up to eight passes of deformation. It was observed that increasing the number of ECAP passes causes fragmentation of Al3Ti platelet particles and decreases their sizes compared to their original sizes in the undeformed Al-Al3Ti specimens. Moreover, the microstructure of route A-ECAPed Al-Al3Ti composite samples showed a strong alignment of the fragmented Al3Ti particles parallel to the pressing axis. On the other hand, ECAPed Al-Al3Ti alloy specimens by route BC have a relatively homogeneous distribution of Al3Ti particles. Because of the platelet Al3Ti particle fragmentation by ECAP, all the ECAPed specimens showed small anisotropy in their wear property in spite of this observed anisotropic microstructure induced by route A-ECAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.M. Wu and Z.Z. Li: Wear, 2000, vol. 244, pp. 147–53.

    Article  CAS  Google Scholar 

  2. M. Yamaguchi and H. Inui: in Structural Applications of Intermetallics Compounds, J.H. Westbrook and R.L. Fleischer, eds., John Wiley, New York, NY, 1995.

  3. N.Q. Wu, G.X. Wang, Z.Z. Li, J.M. Wu, and J.W. Chen: Wear, 1997, vols. 203–204, pp. 155–61.

  4. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: JOM, 2006, vol. 58, pp. 33–39.

    Article  Google Scholar 

  5. K. Furuno, H. Akamatsu, K. Oh-ishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2004, vol. 52, pp. 2497–2507.

    Article  CAS  Google Scholar 

  6. Y. Watanabe, H. Sato, and Y. Fukui: Solid Mech. Mater. Eng., 2008, vol. 2, pp. 842–53.

    Article  Google Scholar 

  7. G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu: Mater. Sci. Eng. A, 2004, vol. 382, pp. 30–34.

    Article  Google Scholar 

  8. R.Z. Valiev, R.K. Islamgaliev, N.F. Kuzmina, Y. Li, and T.G. Langdon: Scripta Mater., 1999, vol. 40, pp. 117–21.

    CAS  Google Scholar 

  9. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  10. R.Z. Valiev and T.G. Langdon: Rev. Adv. Mater. Sci., 2006, vol. 13, pp. 15–26.

    CAS  Google Scholar 

  11. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng. A, 1998, vol. 257, pp. 328–32.

    Article  Google Scholar 

  12. Z. Zhang, Y. Watanabe, and I.-S. Kim: Mater. Sci. Technol., 2005, vol. 21, pp. 708–14.

    Article  CAS  Google Scholar 

  13. Y. Watanabe, P.D. Sequeira, O. Sitdikov, H. Sato, Z. Zhang, and I.-S. Kim: Mater. Sci. Forum, 2007, vols. 561–565, pp. 251–54.

  14. H. Sato and Y. Watanabe: Mater. Sci. Forum, 2007, vols. 561–565, pp. 659–62.

  15. Y. Watanabe, R. Sato, K. Matsuda, and Y. Fukui: Sci. Eng. Comp. Mater., 2004, vol. 11, pp. 185–99.

    Article  CAS  Google Scholar 

  16. K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 1589–99.

    Article  CAS  Google Scholar 

  17. Y. Watanabe, H. Eryu, and K. Matsuura: Acta Mater., 2001, vol. 49, pp. 775–83.

    Article  CAS  Google Scholar 

  18. S.H. McGee and R.L. McCullough: J. Appl. Phys., 1984, vol. 55, pp. 1394–1403.

    Article  Google Scholar 

  19. Y. Watanabe: J. Comp. Mater., 2002, vol. 36, pp. 915–23.

    Article  Google Scholar 

  20. T.G. Langdon: Rev. Adv. Mater. Sci., 2006, vol. 13, pp. 6–14.

    CAS  Google Scholar 

  21. M. Furukawa, Z. Horita, and T.G. Langdon: THERMEC, T. Chandra, N. Wanderka, W. Reimers, and M. Lonescu, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 2009, pp. 1946–1951.

  22. A. Zmitrowicz: Z. Angew. Math. Mech., 1992, vol. 72, pp. 290–92.

    Google Scholar 

  23. Y. Watanabe, N. Yamanaka, and Y. Fukui: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3253–61.

    Article  CAS  Google Scholar 

  24. A.T. Alpas and J. Zhang: Metall. Trans. A, 1994, vol. 25A, pp. 969–81.

    Article  CAS  Google Scholar 

  25. A. Zmitrowicz: J. Theor. Appl. Mech., 2006, vol. 44, pp. 219–53.

    Google Scholar 

  26. J.F. Archard: J. Appl. Phys., vol. 24, pp. 981–88.

  27. A. Zmitrowicz: J. Eng. Sci., 1993, vol. 31, pp. 509–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the “Grant-in-Aid for Scientific Research on Priority Areas (19025005)” and the “Tokai Region Nanotechnology Manufacturing Cluster in Knowledge Cluster Initiative” by the Ministry of Education, Culture, Sports, Science and Technology of Japan. One of the authors (SE) acknowledges the financial support in the form of a scholarship from the Egyptian government. YW gratefully acknowledges the financial support from The Light Metal Educational Foundation Inc. of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimaa El-Hadad.

Additional information

Manuscript submitted September 15, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Hadad, S., Sato, H. & Watanabe, Y. Investigation of Wear Anisotropy in a Severely Deformed Al-Al3Ti Composite. Metall Mater Trans A 43, 3249–3256 (2012). https://doi.org/10.1007/s11661-012-1127-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1127-3

Keywords

Navigation