Skip to main content
Log in

Synthesis of Magnesium Borates by Mechanically Activated Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Different magnesium borate compounds such as MgB4O7, Mg2B2O5, and Mg3B2O6 were synthesized from B2O3/MgO powder blends by mechanically activated annealing (M2A). Milling experiments were carried out in a SPEX 8000 D Mixer/Mill, and mechanically activated powders were subsequently annealed under air. The effects of B2O3/MgO mole ratios (1/1, 1/2, 1/3, and 2/1), milling durations (30 minutes and 1 and 2 hours), annealing durations (2 and 5 hours), and annealing temperatures (973 K, 1173 K, and 1273 K (700 °C, 900 °C, and 1000 °C)) on the formation and microstructure of magnesium borates were investigated. Compositional, microstructural, and thermal characterizations were conducted by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Temperature-product mole amount relations of the B2O3/MgO powder blends were interpreted by thermochemical software. MgB4O7 and Mg2B2O5 crystalline phases were identified in the M2A’d powders in the B2O3/MgO mole ratios of 1/1, 1/2, and 2/1. Mg2B2O5 and Mg3B2O6 crystalline phases were detected in the M2A’d B2O3/MgO: 1/3 powders in addition to unreacted MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. FACTSAGE is a trademark collaboration of Thermfact/CRCT, Montreal, Canada and GTT-Technologies, Aachen, Germany.

  2. MERCK is a trademark of Merck KGaA, Darmstadt, Germany.

  3. BRUKER is a trademark of Bruker AXS, Karlsruhe, Germany.

  4. PROTHERM is a trademark of Alser Co. Inc., Ankara, Turkey.

  5. MALVERN is a trademark of Malvern Instruments Ltd., Worcestershire, UK.

  6. PRECISA is a trademark of Precisa Gravimetrics AG, Dietikon, Switzerland.

  7. SPEX is a trademark of SPEX CertiPrep Group L.L.C, Metuchen, NJ.

  8. WAB is a trademark of Willy A. Bachofen AG, Basel, Switzerland.

  9. THERMOSCIENTIFIC is a trademark of Thermo Fisher Scientific Inc., Soeborg, Denmark.

  10. HITACHI is a trademark of Hitachi Ltd., Tokyo, Japan.

  11. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo, Japan.

  12. FRITSCH is a trademark of Fritsch, Idar-Oberstein, Germany.

References

  1. Y. Li, Z. Fan, J.G. Lu, and R.P.H. Chang: Chem. Mater., 2004, vol. 16, pp. 2512–14.

    Article  CAS  Google Scholar 

  2. A.F. Qasrawi, T.S. Kayed, A. Mergen, and M. Gürü: Res. Bull., 2005, vol. 40, pp. 583–89.

    Article  CAS  Google Scholar 

  3. J. Zhang, Z. Li, and B. Zhang: Mater. Chem. Phys., 2006, vol. 98, pp. 195–97.

    Article  CAS  Google Scholar 

  4. X. Tao and X. Li: Nano Lett., 2008, vol. 8, pp. 505–10.

    Article  CAS  Google Scholar 

  5. S. Li, X. Fang, J. Leng, H. Shen, Y. Fan, and D. Xu: Mater. Lett., 2010, vol. 64, pp. 151–53.

    Article  CAS  Google Scholar 

  6. E.M. Elssfah, A. Elsanousi, J. Zhang, H.S. Song, and C. Tang: Mater. Lett., 2007, vol. 61, pp. 4358–61.

    Article  CAS  Google Scholar 

  7. Y. Zeng, H. Yang, W. Fu, L. Qiao, L. Chang, J. Chen, H. Zhu, M. Li, and G. Zou: Mater. Res. Bull., 2008, vol. 43, pp. 2239–47.

    Article  CAS  Google Scholar 

  8. W. Zhu, Q. Zhang, L. Xiang, F. Wei, X. Sun, X. Piao, and S. Zhu: Cryst. Growth Des., 2008, vol. 8, pp. 2938–45.

    Article  CAS  Google Scholar 

  9. H.M. Davis and M.A. Knight: J. Am. Ceram. Soc., 1945, vol. 28, pp. 97–102.

    Article  CAS  Google Scholar 

  10. S. Miyagawa, S. Hirano, and S. Somiya: Bull. Tokyo Inst. Technol., 1972, vol. 108, pp. 33–42.

    Google Scholar 

  11. J.W. Jiang, L. Wang, Q. Yang, and D.R. Yang: J. Inorg. Mater., 2006, vol. 21, pp. 833–37.

    CAS  Google Scholar 

  12. J. Zhang and Y.M. Zhao: Acta Phys. Chim. Sin., 2006, vol. 22, pp. 110–13.

    CAS  Google Scholar 

  13. A. Obut: J. Alloys Compd., 2008, vol. 457, pp. 86–89.

    Article  CAS  Google Scholar 

  14. B. Xu, T. Li, Y. Zhang, Z. Zhang, X. Liu, and J. Zhao: Cryst. Growth Des., 2008, vol. 8, pp. 1218–22.

    Article  CAS  Google Scholar 

  15. M. Körük and I. Girgin: J. Non-Cryst. Solids, 2009, vol. 355, pp. 965–69.

    Article  Google Scholar 

  16. R. Ma, Y. Bando, D. Golberg, and T. Sato: Angew. Chem. Int. Ed., 2003, vol. 42, pp. 1836–38.

    Article  CAS  Google Scholar 

  17. K. Sakane, T. Kitamura, H. Wada, and M. Suzue: Adv. Powder Technol., 1992, vol. 3, pp. 39–46.

    Article  CAS  Google Scholar 

  18. W. Zhu, L. Xiang, Q. Zhang, X. Zhang, L. Hu, and S. Zhu: J. Cryst. Growth, 2008, vol. 310, pp. 4262–67.

    Article  CAS  Google Scholar 

  19. A. Üçyıldız and İ. Girgin: Cent. Eur. J. Chem., 2010, vol. 8, pp. 758–65.

    Article  Google Scholar 

  20. U. Došler, M.M. Kržmanc, and D. Suvorov: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 413–18.

    Article  Google Scholar 

  21. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  22. E. Gaffet and N. Malhouroux-Gaffet: J. Alloys Compd., 1994, vol. 205, pp. 27–34.

    Article  CAS  Google Scholar 

  23. V. Gauthier, C. Josse, F. Bernard, E. Gaffet, and J.P. Larpin: Mater. Sci. Eng. A-Struct., 1999, vol. 265, pp. 117–28.

    Article  Google Scholar 

  24. E. Gaffet and F. Bernard: Ann. Chim. Sci. Mater., 2002, vol. 27, pp. 47–59.

    Article  CAS  Google Scholar 

  25. M.S. Archana, N. Hebalkar, K. Radha, and J. Joardar: J. Alloys Compd., 2010, vol. 501, pp. 18–24.

    Article  CAS  Google Scholar 

  26. B. Bokhonov, Y. Borisova, and M. Korchagin: Carbon, 2004, vol. 42, pp. 2067–71.

    Article  CAS  Google Scholar 

  27. E. Barraud, S. Bégin-Colin, and G. Le Caër: J. Alloys Compd., 2005, vol. 398, pp. 208–18.

  28. A.A. Kern and A.A. Coelho: Bruker-AXS TOPAS V.3.0, 2006, www.brukeraxs.com.

  29. FACTSAGE 6.2 Thermochemical Software for Windows, Thermfact and GTT-Technologies, Center for Research in Computational Thermochemistry, Montreal, Canada, 2009, www.factsage.com.

  30. D.R. Askeland: The Science and Engineering of Materials, 3rd ed., Wadsworth Publishing, Belmont, CA, 1994, pp. 291–313.

    Google Scholar 

Download references

Acknowledgments

The authors thank Aziz Genç for his help during TEM characterizations. We also acknowledge the State Planning Organization (DPT) for funding the projects entitled “Advanced Technologies in Engineering” with the Project No. 2001K120750 and “Development of Al-Cu Based Metal Matrix Composites via Powder Metallurgy Techniques” with the Project No. 90189 out of which the main infrastructure of the Particulate Materials Laboratories was founded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Ağaoğullari.

Additional information

Manuscript submitted October 4, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ağaoğullari, D., Balci, Ö., Gökçe, H. et al. Synthesis of Magnesium Borates by Mechanically Activated Annealing. Metall Mater Trans A 43, 2520–2533 (2012). https://doi.org/10.1007/s11661-012-1109-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1109-5

Keywords

Navigation