Skip to main content

Advertisement

Log in

Enhancement of Upper Shelf Energy through Delamination Fracture in 0.05 pct P Doped High-Strength Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An ultrafine elongated grain (UFEG) structure with strong 〈110〉//rolling direction (RD) fiber deformation texture was produced by warm-caliber rolling at 773 K (500 °C) and final tempering at 823 K (550 °C), namely tempforming in the 1200 MPa-class, medium-carbon, low-alloy steel with phosphorus (P) content of 0.053 wt pct. Charpy impact tests and tensile tests were performed at a temperature range of 77 K (–196 °C) to 623 K (350 °C) on the tempformed (TF) samples along with a conventional quenched and tempered (QT) samples. The QT structure showed a low upper shelf energy of 70 J and a high ductile-to-brittle transition temperature (DBTT) of 373 K (100 °C) as a result of P segregation and intergranular fracture. A remarkable increase in the upper shelf energy to 150 J from 70 J and a low DBTT of approximately 103 K (–170 °C) were obtained in the UFEG structure. P segregation embrittlement disappeared completely in the UFEG structure, and ductile fracture on the planes normal to RD along with delamination fracture on the planes along RD were observed at a temperature range of 123 K (–150 °C) to 423 K (150 °C). The enhanced delamination occurred because of the microstructural anisotropy of the UFEG structure, a strong 〈110〉//RD fiber deformation texture, and interfaces (i.e. ferrite grain boundaries and cementite particles-ferrite matrix interfaces) weakened by P segregation as feasible crack propagation paths. We studied the delamination (crack-arrester-type) fracture in 0.053 pct P doped high-strength steel along with upper shelf energy and DBTT obtained from the UFEG structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.H. Song, J. Wu, L.Q. Weng, and Z.X. Yuan: Mater. Sci. Eng. A, 2008, vol. 497, p. 524.

    Article  Google Scholar 

  2. R.A. Mulford, C.J. McMahon, D.P. Pope, and H.C. Feng: Metall. Trans. A, 1976, vol. 7A, p. 1183.

    CAS  Google Scholar 

  3. M. Mackenbrock and H.J. Grabke: Mater. Sci. Technol., 1992, vol. 8, p. 541.

    CAS  Google Scholar 

  4. J.D. Embury, N.J. Petch, A.E. Wraith, and E.S. Wright: Trans. TMS-AIME, 1967, vol. 239, p. 114.

    CAS  Google Scholar 

  5. H. Ohtani and C.J. McMahon Jr.: Acta Metall., 1976, vol. 23, p. 377.

    Google Scholar 

  6. T. Maki, K. Tsuzaki, and I. Tamura: Trans. ISIJ, 1980, vol. 20, p. 207.

    CAS  Google Scholar 

  7. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, p. 1789.

    Article  CAS  Google Scholar 

  8. A. Dronhofer, J. Pesicka, A. Dlouhy, and G. Eggeler: Z. Metalkd., 2003, vol. 94, p. 511.

    CAS  Google Scholar 

  9. S. Takaki, K. Kawasaki, and Y. Kimura: J. Mater. Process. Tech., 2001, vol. 11, p. 359.

    Article  Google Scholar 

  10. A. Ohmori, S. Torizuka, and K. Nagai: Tetsu-to-Hagané, 2003, vol. 89, p. 1063.

    Google Scholar 

  11. R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, p. 4881.

    Article  CAS  Google Scholar 

  12. S. Torizuka, A. Ohmori, S.V.S. Narayana Murty, and K. Nagai: Scripta Mater., 2006, vol. 54, p. 563.

    Article  CAS  Google Scholar 

  13. T. Hanamura, M.C. Zhao, H. Qiu, F. Yin, and K. Nagai: Tetsu-to-Hagané, 2009, vol. 95, p. 71.

    Article  CAS  Google Scholar 

  14. N. Muraki, T. Takayama, M. Arai, Y. Kamada, M. Uno, K. Orita, T. Masaki, Y. Arimi, and A. Mutagami: Tetsu-to-Hagané, 1997, vol. 83, p. 215.

    Google Scholar 

  15. N. Tsuji, S. Okuno, Y. Koizumi, and Y. Minamino: Mater. Trans., 2004, vol. 45, p. 2272.

    Article  CAS  Google Scholar 

  16. S.J. Jia, P. Qu, Y. Weng, J.B. Zhang, H.J. Chen, and Q.Y. Liu: Iron and Steel, 2005, vol. 40, p. 59.

    CAS  Google Scholar 

  17. S. Matsuda, Y. Kawashima, S. Sekiguchi, and M. Okamoto: Tetsu-to- Hagané, 1982, vol. 68, p. 435.

    CAS  Google Scholar 

  18. B. Mintz and W.B. Morrison: Mater. Sci. Technol., 2007, vol. 23, p. 1346.

    Article  CAS  Google Scholar 

  19. Y. Kimura, T. Inoue, F. Yin, O. Sitdikov, and K. Tsuzaki: Scripta Mater., 2007, vol. 57, p. 465.

    Article  CAS  Google Scholar 

  20. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: Science, 2008, vol. 320, p. 1057.

    Article  CAS  Google Scholar 

  21. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: ISIJ Int., 2010, vol. 50, p. 152.

    Article  CAS  Google Scholar 

  22. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai: Metall. Mater. Trans. A, 2009, vol. 41A, p. 341.

    Google Scholar 

  23. P. Shanmugam and S.D. Pathak: Eng. Fract. Mech., 1996, vol. 53, p. 991.

    Article  Google Scholar 

  24. W. Zhou and N.L. Loh: Scripta Mater., 1996, vol. 34, p. 633.

    Article  CAS  Google Scholar 

  25. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie: Metall. Trans. A, 1989, vol. 20A, p. 485.

  26. S. Ochiai and K. Osamura: J. Mater. Sci., 1988, vol. 23, p. 886.

    Article  Google Scholar 

  27. S.P. Joshi and C.T. Sun: J. Compos. Mater., 1985, vol. 19, p. 51.

    Article  Google Scholar 

  28. D.W. Kum, T. Oyama, J. Wadsworth, and O.D. Sherby: J. Mech. Phys., 1983, vol. 31, p. 173.

    Article  Google Scholar 

  29. A.J. McEvily Jr. and R.H. Bush: Trans. Am. Soc. Met., 1962, vol. 55, p. 654.

    CAS  Google Scholar 

  30. C.M. Yen and C.A. Stickels: Metall. Trans., 1970, vol. 1, p. 3037.

    CAS  Google Scholar 

  31. J.W. Morris Jr., C.S. Lee, and Z. Guo: ISIJ Int. 2003, vol. 43, p. 410.

    Article  CAS  Google Scholar 

  32. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, Columbus, OH, 1986, pp. 477-8.

    Google Scholar 

  33. A.W. Thompson and M.F. Ashby: Scripta Metall., 1984, vol. 18, p. 127.

    Article  Google Scholar 

  34. H. Qiu, H. Mori, M. Enoki, and T. Kishi: ISIJ Int., 1999, vol. 39, p. 352.

    Article  CAS  Google Scholar 

  35. H. Qiu, H. Mori, M. Enoki, and T. Kishi: ISIJ Int., 1999, vol. 39, p. 358.

    Article  CAS  Google Scholar 

  36. H. Qiu, M. Enoki, Y. Kawaguchi, and T. Kishi: Eng. Fract. Mech., 2003, vol. 70, p. 589.

    Article  Google Scholar 

  37. H. Qiu, M. Enoki, Y. Kawaguchi, and T. Kishi: Eng. Fract. Mech., 2003, vol. 70, p. 599.

    Article  Google Scholar 

  38. K. Srinivasan, Y. Huang, O. Kolednik, and T. Siegmund: J. Mech. Phys. Sol., 2008, vol. 56, p. 2707.

    Article  Google Scholar 

  39. M. Jafari, Y. Kimura, Y. Nie, and K. Tsuzaki: ISIJ Int., 2010, vol. 50, pp. 1660–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Jafari.

Additional information

Manuscript submitted July 29, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari, M., Kimura, Y. & Tsuzaki, K. Enhancement of Upper Shelf Energy through Delamination Fracture in 0.05 pct P Doped High-Strength Steel. Metall Mater Trans A 43, 2453–2465 (2012). https://doi.org/10.1007/s11661-012-1095-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1095-7

Keywords

Navigation