Metallurgical and Materials Transactions A

, Volume 43, Issue 6, pp 2043–2055 | Cite as

Texture and Microstructural Evolution in Pearlitic Steel During Triaxial Compression

  • Pankaj Kumar
  • Nilesh P. Gurao
  • Arunansu Haldar
  • Satyam Suwas


This article presents the deformation behavior of high-strength pearlitic steel deformed by triaxial compression to achieve ultra-fine ferrite grain size with fragmented cementite. The consequent evolution of microstructure and texture has been studied using scanning electron microscopy, electron back-scatter diffraction, and X-ray diffraction. The synergistic effect of diffusion and deformation leads to the uniform dissolution of cementite at higher temperature. At lower temperature, significant grain refinement of ferrite phase occurs by deformation and exhibits a characteristic deformation texture. In contrast, the high-temperature deformed sample shows a weaker texture with cube component for the ferrite phase, indicating the occurrence of recrystallization. The different mechanisms responsible for the refinement of ferrite as well as the fragmentation of cementite and their interaction with each other have been analyzed. Viscoplastic self-consistent simulation was employed to understand deformation texture in the ferrite phase during triaxial compression.


  1. 1.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.CrossRefGoogle Scholar
  2. 2.
    H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.CrossRefGoogle Scholar
  3. 3.
    A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki: Philos. Mag., 2001, vol. A81, pp. 2629–43.Google Scholar
  4. 4.
    A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, and K. Tsuzaki: Acta Mater., 2002, vol. 50, pp. 1547–57.CrossRefGoogle Scholar
  5. 5.
    O. Sitdikov, T. Sakai, A. Goloborodko, H. Miura, and R. Kaibyshev: Scripta Mater., 2004, vol. 51, pp. 175–79.CrossRefGoogle Scholar
  6. 6.
    S. Ringeval, D. Piot, C. Desrayaud, and J.H. Driver: Acta Mater., 2006, vol. 54, pp. 3095–3105.CrossRefGoogle Scholar
  7. 7.
    A.K. Padap, G.P. Chaudhari, S.K. Nath, and V. Pancholi: Mater. Sci. Eng. A, 2009, vol. A527, pp. 110–17.Google Scholar
  8. 8.
    A. Bhowmik, S. Biswas, S.S. Dhinwal, A. Sarkar, R.K. Ray, D. Bhattacharjee, and S. Suwas: Mater. Sci. Forum, 2012, vol. 702–703, pp. 774–77.Google Scholar
  9. 9.
    N. Maruyama, T. Tarui, and H. Tashiro: Scripta Mater., 2002, vol. 46, pp. 599–603.CrossRefGoogle Scholar
  10. 10.
    T. Furuhala, T. Mizoguchi, and T. Maki: ISIJ Int., 2005, vol. 45, pp. 392–98.CrossRefGoogle Scholar
  11. 11.
    K. Pawlik: Phys. Stat. Sol., 1986, vol. B134, pp. 477–83.Google Scholar
  12. 12.
    M. Zidani, S. Messaoudi, T. Baudin, D. Solas, and M.H. Mathon: Int. J. Mater. Forum, 2010, vol. 3, pp. 7–11.CrossRefGoogle Scholar
  13. 13.
    R.A. Lebensohn and C.N. Tome: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRefGoogle Scholar
  14. 14.
    C.N. Tome, G.R. Canova, and U.F. Kocks: Acta Metall., 1984, vol. 32, pp. 1637–53.CrossRefGoogle Scholar
  15. 15.
    V.N. Gridnev and V.G. Gavrilyuk: Phys. Metals, 1982, vol. 4, pp. 531–51.Google Scholar
  16. 16.
    V.G. Gavriljuk: Mater. Sci. Eng. A, 2003, vol. 345A, pp. 81–89.Google Scholar
  17. 17.
    J. Languillaume, G. Kapelski, and B. Baudelet: Acta Mater., 1997, vol. 45, pp. 1201–12.CrossRefGoogle Scholar
  18. 18.
    X. Sauvage, J. Copreaux, F. Danoix, and D. Blavette: Phil. Mag., 2000, vol. A80, pp. 781–96.Google Scholar
  19. 19.
    L. Li, W. Yang, and Z. Sun: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 624–35.CrossRefGoogle Scholar
  20. 20.
    W. Lojkowski, M. Djahanbaksh, G. Burkle, S. Gierlotka, W. Zielinski, and H.J. Fecht: Mater. Sci. Eng. A, 2001, vol. 303A, pp. 197–208.Google Scholar
  21. 21.
    C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.CrossRefGoogle Scholar
  22. 22.
    A.Y. Badmos and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2189–94.CrossRefGoogle Scholar
  23. 23.
    Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht: Acta Mater., 2003, vol. 51, pp. 5555–70.CrossRefGoogle Scholar
  24. 24.
    L. Storojeva, D. Ponge, R. Kaspar, and D. Raabe: Acta Mater., 2004, vol. 52, pp. 2209–20.CrossRefGoogle Scholar
  25. 25.
    D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, 2nd ed., Chapman & Hall, London, UK, 1984.Google Scholar
  26. 26.
    M. Zelin: Acta Mater., 2002, vol. 50, pp. 4431–47.CrossRefGoogle Scholar
  27. 27.
    A. Inoue, T. Ogura, and T. Masumoto: Metall. Trans. A, 1977, vol. A8, pp. 1689–95.Google Scholar
  28. 28.
    M. Perez: Scripta Mater., 2005, vol. 52, pp. 709–12.CrossRefGoogle Scholar
  29. 29.
    S. Chattopadhyay and C.M. Sellars: Acta Metall., 1982, vol. 30, pp. 157–70.CrossRefGoogle Scholar
  30. 30.
    R.K. Abu Al-Rub and G.Z. Voyiadjis: Int. J. Plast., 2006, vol. 22, pp. 654–84.CrossRefGoogle Scholar
  31. 31.
    J.G. Selvillano: Mater. Sci. Eng., 1975, vol. 21, pp. 221–25.CrossRefGoogle Scholar
  32. 32.
    A. Bhowmik, S. Biswas, S. Suwas, R.K. Ray, and D. Bhattacharjee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2729–42.CrossRefGoogle Scholar
  33. 33.
    Y. Zhong, F. Yin, T. Sakaguchi, K. Nagai, and K. Yang: Acta Mater., 2007, vol. 55, pp. 2747–56.CrossRefGoogle Scholar
  34. 34.
    V. Vitek, D.A. Smith, and R.C. Pond: Philos. Mag., 1980, vol. 41A, pp. 649–63.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Pankaj Kumar
    • 1
  • Nilesh P. Gurao
    • 1
  • Arunansu Haldar
    • 2
  • Satyam Suwas
    • 1
  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Tata Steel, Research and Development SectionJamshedpurIndia

Personalised recommendations