Skip to main content

Advertisement

Log in

Ultrafine-Grained Aluminum Processed by a Combination of Hot Isostatic Pressing and Dynamic Plastic Deformation: Microstructure and Mechanical Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercial-purity (99 wt pct), bulk, ultrafine-grained aluminum samples were produced by a two-step process that combines powder consolidation by hot isostatic pressing and dynamic plastic deformation. The compaction step yielded crystallographic texture-free specimens with an average grain size of approximately 2 μm. Then, some of the consolidated specimens were deformed dynamically at room temperature at an initial strain rate of 370 seconds−1 and up to an axial strain of ε = 1.25. After dynamic plastic deformation, the grain size and the dislocation density were approximately 500 nm and 1014 m−2, respectively. The yield strength was approximately 77 MPa for the as-consolidated sample, which increased up to approximately 103 MPa and 120 MPa for the impacted samples along the axial and radial directions, respectively. The compression stress as a function of strain showed saturation behavior for the axially deformed samples, whereas the specimens deformed along the radial direction exhibited significant strain softening. The latter behavior is explained mainly by the weakening of the crystallographic texture that occurred because of the strain-path change along the radial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V.J. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  2. A.P. Zhilyaev and T.G. Langdon: Progr. Mater. Sci., 2008, vol. 53, pp. 893–979.

    Article  CAS  Google Scholar 

  3. R.Z. Valiev and T.G. Langdon: Progr. Mater. Sci., 2006, vol. 51, pp. 881–981.

    Article  CAS  Google Scholar 

  4. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  CAS  Google Scholar 

  5. P.E. Armstrong, J.E. Hockett, and O.D. Sherby: J. Mech. Phys. Solids, 1982, vol. 30, pp. 37–58.

    Article  CAS  Google Scholar 

  6. A.P. Zhilyaev, J. Gubicza, G. Nurislamova, A. Révész, S. Surinach, M.D. Baro, and T. Ungar: Phys. Stat. Solidi, 2003, vol. 198, pp. 263–71.

    Article  CAS  Google Scholar 

  7. B. Bay, N. Hansen, D.A. Hughes, and D.K. Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  CAS  Google Scholar 

  8. W.S. Zhao, N.R. Tao, J.Y. Guo, Q.H. Lu, and K. Lu: Scripta Mater., 2005, vol. 53, pp. 745–49.

    Article  CAS  Google Scholar 

  9. Y. Zhang, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 2429–40.

    Article  CAS  Google Scholar 

  10. H.S. Kim and Y. Estrin: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 127–30.

    Google Scholar 

  11. D. Jia, K.T. Ramesh, E. Ma, L. Lu, and K.J. Lu: Scripta Mater., 2001, vol. 45, pp. 613–20.

    Article  CAS  Google Scholar 

  12. S. Billard, J. Fondere, B. Bacroix, and G. Dirras: Acta Mater., 2006, vol. 54, pp. 411–21.

    Article  CAS  Google Scholar 

  13. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia: Scripta Mater., 2003, vol. 49, pp. 297–302.

    Article  CAS  Google Scholar 

  14. H.Q. Bui: Ph.D. Dissertation, University of Paris 13, Villetaneuse, France, 2008.

  15. M. Legros, B.R. Elliott, M.N Rittner, J.R. Weertman, and K.J. Hemker: Philos. Mag. A, 2000, vol. 80, pp. 1017–26.

    Article  CAS  Google Scholar 

  16. F. Fellah, G. Dirras, J. Gubicza, F. Schoenstein, N. Jouini, S.M. Cherif, C. Gatel, and J. Douin: J. Alloys Compd., 2010, vol. 489, pp. 424–28.

    Article  CAS  Google Scholar 

  17. W.Q. Cao, G.F. Dirras, M. Benyoucef, and B. Bacroix: Mater. Sci. Eng. A, 2007, vol. 462, pp. 100–105.

    Article  Google Scholar 

  18. J. Gubicza, G. Dirras, P. Szommer, and B. Bacroix: Mater. Sci. Eng. A, 2007, vol. 458, pp. 385–90.

    Article  Google Scholar 

  19. H.Q. Bui, G. Dirras, S. Ramtani, and J. Gubicza: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3227–35.

    Article  Google Scholar 

  20. A. Abdul-Latif, G.F. Dirras, S. Ramtani, and A. Hocini: Int. J. Mech. Sci., 2009, vol. 51, pp. 797–806.

    Article  Google Scholar 

  21. G. Dirras, T. Chauveau, A. Abdul-Latif, S. Ramtani, and H.Q. Bui: Phys. Stat. Solidi, 2010, vol. 207, pp. 2233–37.

    Article  CAS  Google Scholar 

  22. Labotex Software. http://www.labosoft.com.pl.

  23. G. Ribárik, J. Gubicza, and T. Ungár: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 343–47.

    Google Scholar 

  24. L. Balogh, G. Ribárik, and T. Ungár: J. Appl. Phys., 2006, vol. 100, pp. 1–10.

    Article  Google Scholar 

  25. G.F. Dirras, J.L. Duval, and W. Swiatnicki: Mater. Sci. Eng. A, 1999, vol. 263, pp. 85–95.

    Article  Google Scholar 

  26. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31.

    Article  CAS  Google Scholar 

  27. M. Kawasaki, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2009, vol. 524, pp. 143–50.

    Article  Google Scholar 

  28. G. Dirras, H. Couque, J. Gubicza, A. Abdelouhab, T. Chauveau, and J. Penei: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4128–35.

    Article  Google Scholar 

  29. G.H. Zahid, Y. Huang, and P.B. Prangnell: Acta Mater., 2009, vol. 57, pp. 3509–21.

    Article  CAS  Google Scholar 

  30. Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu: Acta Mater., 2009, vol. 57, pp. 761–72.

    Article  CAS  Google Scholar 

  31. J.C. Glez and J.H. Driver: Acta Mater., 2003, vol. 51, pp. 2989–3003.

    Article  CAS  Google Scholar 

  32. T. Ungár and J. Gubicza: Z. Kristallographie, 2007, vol. 222, pp. 114–28.

    Article  Google Scholar 

  33. J. Gubicza, N.Q. Chinh, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2004, vols. 387–389, p. 55.

    Google Scholar 

  34. H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng. A, 1999, vol. 265, pp. 188–96.

    Article  Google Scholar 

  35. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Adv. Mater., 2006, vol. 18, pp. 34–39.

    Article  CAS  Google Scholar 

  36. W.H. Sillekens, J.H. Dautzenberg, and J.A.G. Kals: CIRP Ann. Manuf. Techn., 1988, vol. 37, pp. 213–16.

    Article  Google Scholar 

  37. E.M. Viatkina, W.A.M. Brekelmans, and M.G.D. Geers: J. Mater. Process. Tech., 2009, vol. 209, pp. 186–93.

    Article  CAS  Google Scholar 

  38. E.V. Nesterova, B. Bacroix, and C. Teodosiu: Mater. Sci. Eng. A, 2001, vols. 309–310, pp. 495–99.

    Google Scholar 

  39. E.F. Rauch and J.-H. Schmitt: Mater. Sci. Eng. A, 1989, vol. 113, pp. 441–48.

    Article  Google Scholar 

  40. S. Li : Scripta Mater., 2007, vol. 56, pp. 445–48.

    Article  CAS  Google Scholar 

  41. Z. Horita, T. Fujinami, and T.G. Langdon: Mater. Sci. Eng. A, 2001, vol. 318, pp. 34–41.

    Article  Google Scholar 

  42. B.Q. Han, E.J. Lavernia, and F.A. Mohamed: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 71–83.

    Article  CAS  Google Scholar 

  43. W.Z. Han, Z.F. Zhang, S.D. Wu, S.X. Li, and Y.D. Wang: Phil. Mag. Lett., 2006, vol. 86, pp. 435–41.

    Article  CAS  Google Scholar 

  44. D.J. Alexander and I.J. Beyerlein: Mater. Sci. Eng. A, 2005, vols. 410–11, pp. 480–84.

    Google Scholar 

  45. R.Z. Valiev and T.G. Langdon: Progr. Mater. Sci., 2006, vol. 51, pp. 881–981.

    Article  CAS  Google Scholar 

  46. I.J. Beyerlein and C.N. Tomé: Int. J. Plast., 2007, vol. 23, pp. 640–64.

    Article  CAS  Google Scholar 

  47. T. Ungár, L. Li, G. Tichy, W. Pantleon, H. Choo, and P.K. Liaw: Scripta Mater., 2011, vol. 64, pp. 876–79.

    Article  Google Scholar 

  48. C.P. Chang, P.L. Sun, and P.W. Kao: Acta Mater., 2000, vol. 48, pp. 3377–85.

    Article  CAS  Google Scholar 

  49. N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev: Acta Mater., 2010, vol. 58, pp. 3624–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the French National Research Agency, ANR (ANR 09-BLAN-0010-01) as well as by Grant No. K-81360 from the Hungarian Scientific Research Fund, OTKA,. The European Union and the European Social Fund have provided financial support to the project under the grant agreement TÁMOP 4.2.1./B-09/1/KMR-2010-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dirras.

Additional information

Manuscript submitted January 21, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirras, G., Chauveau, T., Abdul-Latif, A. et al. Ultrafine-Grained Aluminum Processed by a Combination of Hot Isostatic Pressing and Dynamic Plastic Deformation: Microstructure and Mechanical Properties. Metall Mater Trans A 43, 1312–1322 (2012). https://doi.org/10.1007/s11661-011-1028-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1028-x

Keywords

Navigation