Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel

Abstract

This article discusses the role of twinning on dynamic recrystallization (DRX) and microstructural evolution during moderate to high strain rate (0.1 to 100 s−1) hot deformation (1173 to 1373 K (900 to 1100 °C) range) in a Ti-modified austenitic stainless steel (alloy D9). The extent of DRX increased with increasing strain rate and temperature in the range of hot working parameters employed in the present study. The acceleration of DRX with strain rate is attributed to increased rate of dislocation accumulation during high strain rate deformation as well as adiabatic temperature rise. The DRX grains were found to be twinned and a linear relationship was observed between the area fraction of DRX grains and the fraction of Σ3 boundaries. Analysis of misorientations revealed that the majority of these Σ3 boundaries are newly formed coherent twin boundaries during DRX. Interaction of pre-existing Σ3 boundaries that may regenerate new Σ3 boundaries did not seem to occur frequently during DRX. The majority of the twin boundaries are found within the DRX grains, signifying that these annealing twins are mainly formed by “growth accidents” during the expansion of the DRX grains. It is suggested that annealing twins play an important role during nucleation and subsequent expansion of the DRX process in alloy D9.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    718 PLUS is a trademark of Allegheny Technologies International, Pittsburgh, PA.

References

  1. 1.

    R.W. Cahn and P. Haasen: Physical Metallurgy, Cambridge University Press, New York, NY, 1996, vol. III.

  2. 2.

    I.P. Pinheiro, R. Barbosa, and P.R. Cetlin: Mater. Sci. Eng. A, 2007, vol. 457, pp. 90–93.

    Article  Google Scholar 

  3. 3.

    P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Mater. Sci. Eng. A, 2006, vol. 420, pp. 306–14.

    Article  Google Scholar 

  4. 4.

    H. Beladi, P. Cizek, and P.D. Hodgson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1175–89.

    Article  CAS  Google Scholar 

  5. 5.

    Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 497, pp. 479–86.

    Article  Google Scholar 

  6. 6.

    A.G. Beer and M.R. Barnett: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1856–67.

    Article  CAS  Google Scholar 

  7. 7.

    H. Miura, M. Ozama, R. Mogawa, and T. Sakai: Scripta Mater., 2003, vol. 48, pp. 1501–05.

    Article  CAS  Google Scholar 

  8. 8.

    U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi: Acta Metall. Mater., 1994, vol. 42, pp. 3183–95.

    Article  CAS  Google Scholar 

  9. 9.

    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  10. 10.

    T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209.

    Article  CAS  Google Scholar 

  11. 11.

    H.J. McQueen: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 203–08.

    Google Scholar 

  12. 12.

    A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139–47.

    Article  Google Scholar 

  13. 13.

    A. Dehghan-Manshadi, H. Beladi, M.R. Barnett, and P.D. Hodgson: Mater. Sci. Forum, 2004, vol. 467–470, pp. 1163–68.

    Article  Google Scholar 

  14. 14.

    A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1359–70.

    Article  CAS  Google Scholar 

  15. 15.

    D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69–80.

    Article  CAS  Google Scholar 

  16. 16.

    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon-Elsevier, Oxford, United Kingdom, 2004.

    Google Scholar 

  17. 17.

    S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma: Metall. Mater. Trans A, 2011, vol. 42A, pp. 1062–72.

    Article  Google Scholar 

  18. 18.

    E. Brünger, X. Wang, and G. Gottstein: Scripta Mater., 1998, vol. 38, pp. 184349.

    Article  Google Scholar 

  19. 19.

    S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, and P. Poelt: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3754–60.

    Article  Google Scholar 

  20. 20.

    S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, P.V. Sivaprasad, T. Jayakumar, and B. Raj: Philos. Mag., 2008, vol. 88, pp. 883–97.

    Article  CAS  Google Scholar 

  21. 21.

    W. Roberts and B. Ahlblom: Acta Metall., 1978, vol. 26, pp. 801–13.

    Article  CAS  Google Scholar 

  22. 22.

    S. Mandal, P.V. Sivaprasad, and V. Subramanya Sarma: Mater. Manufact. Process., 2010, vol. 25, pp. 54–59.

    Article  CAS  Google Scholar 

  23. 23.

    M. Jafari and A. Najafizadeh: Mater. Sci. Eng. A, 2009, vol. 501, pp. 16–25.

    Article  Google Scholar 

  24. 24.

    S. Mandal, P.V. Sivaprasad, and R.K. Dube: J. Mater. Sci., 2007, vol. 42, pp. 2724–34.

    Article  CAS  Google Scholar 

  25. 25.

    Y. Han, D. Zou, Z. Chen, G. Fan, and W. Zhang: Mater. Charact., 2011, vol. 62, pp. 198–203.

    Article  CAS  Google Scholar 

  26. 26.

    S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, and J. Tian: Scripta Mater., 2010, vol. 63, pp. 985–88.

    Article  CAS  Google Scholar 

  27. 27.

    T. Sakai and M. Ohashi: Mater. Sci. Technol., 1990, vol. 6, pp. 1251–57.

    CAS  Google Scholar 

  28. 28.

    H.Q. Sun, Y.N. Shi, M.X. Zhang, and K. Lu: Acta Mater., 2007, vol. 55, pp. 975–82.

    Article  CAS  Google Scholar 

  29. 29.

    D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  30. 30.

    H. Davies and V. Randle: Mater. Sci. Technol., 2000, vol. 16, pp. 1399–1402.

    Article  CAS  Google Scholar 

  31. 31.

    V. Randle: J. Mater. Sci., 2005, vol. 40, pp. 853–59.

    Article  CAS  Google Scholar 

  32. 32.

    L.C. Lim and R. Raj: Acta Metall., 1984, vol. 32, pp. 1177–81.

    Article  CAS  Google Scholar 

  33. 33.

    R. Kapoor, B. Paul, S. Raveendra, I. Samajdar, and J.K. Chakravartty: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 818–27.

    Article  CAS  Google Scholar 

  34. 34.

    X. Wang, E. Brunger, and G. Gottstein: Scripta Mater., 2002, vol. 46, pp. 875–80.

    Article  CAS  Google Scholar 

  35. 35.

    H. Miura, T. Sakai, R. Mogawa, and G. Gottstein: Scripta Mater., 2004, vol. 51, pp. 671–75.

    Article  CAS  Google Scholar 

  36. 36.

    S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath: Acta Mater., 1997, vol. 45, pp. 2633–38.

    Article  CAS  Google Scholar 

  37. 37.

    S. Mandal, P.V. Sivaprasad, B. Raj, and V. Subramanya Sarma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3298–3307.

    Article  CAS  Google Scholar 

  38. 38.

    H. Gleiter: Acta Metall., 1969, vol. 17, pp. 1421–28.

    Article  CAS  Google Scholar 

  39. 39.

    G. Owen and V. Randle: Scripta Mater., 2006, vol. 55, pp. 959–62.

    Article  CAS  Google Scholar 

  40. 40.

    C.S. Pande, M.A. Imam, and B.B. Rath: Metall. Trans. A, 1990, vol. 21A, pp. 2891–96.

    CAS  Google Scholar 

  41. 41.

    P. Karduck, G. Gottstein, and H. Mecking: Acta Metall., 1983, vol. 31, pp. 1525–36.

    Article  CAS  Google Scholar 

  42. 42.

    V.M. Sample, G.L. Fitzsimonss, and A.J. DeArdo: Acta Metall., 1987, vol. 35, pp. 367–79.

    Article  CAS  Google Scholar 

  43. 43.

    D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo: Acta Mater., 2007, vol. 55, pp. 4233–41.

    Article  CAS  Google Scholar 

  44. 44.

    A. Gholinia, I. Brough, J. Humphreys, D. McDonald, and P. Bate: Mater. Sci. Technol., 2010, vol. 26, pp. 685–90.

    CAS  Google Scholar 

  45. 45.

    A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 2002, vol. 323, pp. 177–86.

    Article  Google Scholar 

  46. 46.

    Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 486, pp. 321–32.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumantra Mandal.

Additional information

Manuscript submitted April 28, 2011.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mandal, S., Bhaduri, A.K. & Subramanya Sarma, V. Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel. Metall Mater Trans A 43, 2056–2068 (2012). https://doi.org/10.1007/s11661-011-1012-5

Download citation

Keywords

  • High Strain Rate
  • Twin Boundary
  • Annealing Twin
  • Adiabatic Temperature Rise
  • Grain Boundary Character Distribution