Abstract
This article discusses the role of twinning on dynamic recrystallization (DRX) and microstructural evolution during moderate to high strain rate (0.1 to 100 s−1) hot deformation (1173 to 1373 K (900 to 1100 °C) range) in a Ti-modified austenitic stainless steel (alloy D9). The extent of DRX increased with increasing strain rate and temperature in the range of hot working parameters employed in the present study. The acceleration of DRX with strain rate is attributed to increased rate of dislocation accumulation during high strain rate deformation as well as adiabatic temperature rise. The DRX grains were found to be twinned and a linear relationship was observed between the area fraction of DRX grains and the fraction of Σ3 boundaries. Analysis of misorientations revealed that the majority of these Σ3 boundaries are newly formed coherent twin boundaries during DRX. Interaction of pre-existing Σ3 boundaries that may regenerate new Σ3 boundaries did not seem to occur frequently during DRX. The majority of the twin boundaries are found within the DRX grains, signifying that these annealing twins are mainly formed by “growth accidents” during the expansion of the DRX grains. It is suggested that annealing twins play an important role during nucleation and subsequent expansion of the DRX process in alloy D9.
This is a preview of subscription content, access via your institution.













Notes
718 PLUS is a trademark of Allegheny Technologies International, Pittsburgh, PA.
References
R.W. Cahn and P. Haasen: Physical Metallurgy, Cambridge University Press, New York, NY, 1996, vol. III.
I.P. Pinheiro, R. Barbosa, and P.R. Cetlin: Mater. Sci. Eng. A, 2007, vol. 457, pp. 90–93.
P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Mater. Sci. Eng. A, 2006, vol. 420, pp. 306–14.
H. Beladi, P. Cizek, and P.D. Hodgson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1175–89.
Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 497, pp. 479–86.
A.G. Beer and M.R. Barnett: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1856–67.
H. Miura, M. Ozama, R. Mogawa, and T. Sakai: Scripta Mater., 2003, vol. 48, pp. 1501–05.
U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi: Acta Metall. Mater., 1994, vol. 42, pp. 3183–95.
R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.
T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209.
H.J. McQueen: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 203–08.
A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139–47.
A. Dehghan-Manshadi, H. Beladi, M.R. Barnett, and P.D. Hodgson: Mater. Sci. Forum, 2004, vol. 467–470, pp. 1163–68.
A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1359–70.
D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69–80.
F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon-Elsevier, Oxford, United Kingdom, 2004.
S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma: Metall. Mater. Trans A, 2011, vol. 42A, pp. 1062–72.
E. Brünger, X. Wang, and G. Gottstein: Scripta Mater., 1998, vol. 38, pp. 1843–49.
S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, and P. Poelt: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3754–60.
S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, P.V. Sivaprasad, T. Jayakumar, and B. Raj: Philos. Mag., 2008, vol. 88, pp. 883–97.
W. Roberts and B. Ahlblom: Acta Metall., 1978, vol. 26, pp. 801–13.
S. Mandal, P.V. Sivaprasad, and V. Subramanya Sarma: Mater. Manufact. Process., 2010, vol. 25, pp. 54–59.
M. Jafari and A. Najafizadeh: Mater. Sci. Eng. A, 2009, vol. 501, pp. 16–25.
S. Mandal, P.V. Sivaprasad, and R.K. Dube: J. Mater. Sci., 2007, vol. 42, pp. 2724–34.
Y. Han, D. Zou, Z. Chen, G. Fan, and W. Zhang: Mater. Charact., 2011, vol. 62, pp. 198–203.
S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, and J. Tian: Scripta Mater., 2010, vol. 63, pp. 985–88.
T. Sakai and M. Ohashi: Mater. Sci. Technol., 1990, vol. 6, pp. 1251–57.
H.Q. Sun, Y.N. Shi, M.X. Zhang, and K. Lu: Acta Mater., 2007, vol. 55, pp. 975–82.
D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.
H. Davies and V. Randle: Mater. Sci. Technol., 2000, vol. 16, pp. 1399–1402.
V. Randle: J. Mater. Sci., 2005, vol. 40, pp. 853–59.
L.C. Lim and R. Raj: Acta Metall., 1984, vol. 32, pp. 1177–81.
R. Kapoor, B. Paul, S. Raveendra, I. Samajdar, and J.K. Chakravartty: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 818–27.
X. Wang, E. Brunger, and G. Gottstein: Scripta Mater., 2002, vol. 46, pp. 875–80.
H. Miura, T. Sakai, R. Mogawa, and G. Gottstein: Scripta Mater., 2004, vol. 51, pp. 671–75.
S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath: Acta Mater., 1997, vol. 45, pp. 2633–38.
S. Mandal, P.V. Sivaprasad, B. Raj, and V. Subramanya Sarma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3298–3307.
H. Gleiter: Acta Metall., 1969, vol. 17, pp. 1421–28.
G. Owen and V. Randle: Scripta Mater., 2006, vol. 55, pp. 959–62.
C.S. Pande, M.A. Imam, and B.B. Rath: Metall. Trans. A, 1990, vol. 21A, pp. 2891–96.
P. Karduck, G. Gottstein, and H. Mecking: Acta Metall., 1983, vol. 31, pp. 1525–36.
V.M. Sample, G.L. Fitzsimonss, and A.J. DeArdo: Acta Metall., 1987, vol. 35, pp. 367–79.
D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo: Acta Mater., 2007, vol. 55, pp. 4233–41.
A. Gholinia, I. Brough, J. Humphreys, D. McDonald, and P. Bate: Mater. Sci. Technol., 2010, vol. 26, pp. 685–90.
A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 2002, vol. 323, pp. 177–86.
Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 486, pp. 321–32.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted April 28, 2011.
Rights and permissions
About this article
Cite this article
Mandal, S., Bhaduri, A.K. & Subramanya Sarma, V. Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel. Metall Mater Trans A 43, 2056–2068 (2012). https://doi.org/10.1007/s11661-011-1012-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-011-1012-5
Keywords
- High Strain Rate
- Twin Boundary
- Annealing Twin
- Adiabatic Temperature Rise
- Grain Boundary Character Distribution