Skip to main content
Log in

Crossed-Wire Laser Microwelding of Pt-10 Pct Ir to 316 LVM Stainless Steel: Part II. Effect of Orientation on Joining Mechanism

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With the increasing complexity of medical devices and with efforts to reduce manufacturing costs, challenges arise in joining dissimilar materials. In this study, the laser weldability of dissimilar joints between Pt-10 pct Ir and 316 low-carbon vacuum melted (LVM) stainless steel (SS) crossed wires was investigated by characterizing the weld geometry, joint strength, morphology of weld cross sections, and differences in joining behavior, depending on which material is subject to the incident laser beam. With the Pt-Ir alloy on top, a significant amount of porosity was observed on the surface of the welds as well as throughout the weld cross sections. This unique form of porosity is believed to be a result of preferential vaporization of 316 LVM SS alloying elements that become mixed with the molten Pt-10 pct Ir during welding. The joining mechanism documented in micrographs of cross-sectioned welds was found to transition from laser brazing to fusion welding. It is inferred that the orientation of the two dissimilar metals (i.e., which material is subject to the incident laser beam) plays an important role in weld quality of crossed-wire laser welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. MP35N is a trademark of SPS Technologies Inc., Jenkintown, PA.

  2. KOVAR is a trademark of Carpenter Technology Corporation, Wyomissing, PA.

  3. INSTRON is a trademark of Instron, Canton, MA.

References

  1. Microjoining and Nanojoining, Y. Zhou, ed., Woodhead Publishing Ltd., Cambridge, United Kingdom, 2008.

  2. J. Xie and S. Safarevich: Proc. Materials and Process for Medical Devices Conf. (MPMD), Anaheim, CA, Sept. 2003, pp. 25–30.

  3. N.J. Noolu, H.W. Kerr, Y. Zhou, and J. Xie: Mater. Sci. Eng. A, 2005, vol. 397, pp. 8–15.

    Article  Google Scholar 

  4. I. Khan and Y. Zhou: Proc. Materials and Processes for Medical Devices Conf. (MPMD), Palm Springs, CA, Sept. 2007, pp. 38–41.

  5. D.R. Haynes, T.N. Crotti, and M.R. Haywood: J. Biomed. Mater., 2000, vol. 49 (2), pp. 167–75.

    Article  CAS  Google Scholar 

  6. S. Fukumoto and Y. Zhou: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3165–76.

    Article  CAS  Google Scholar 

  7. S. Fukumoto, Z. Chen, and Y. Zhou: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2717–24.

    Article  CAS  Google Scholar 

  8. Z. Chen: J. Mater. Sci., 2007, vol. 42, pp. 5756–65.

    Article  CAS  Google Scholar 

  9. K.J. Ely and Y. Zhou: Sci. Technol. Weld. Join., 2001, vol. 6 (2), pp. 63–72.

    Article  CAS  Google Scholar 

  10. Y.D. Huang, A. Pequegnat, J.C. Feng, M.I. Khan, and Y. Zhou: Sci. Technol. Weld. Join., 2011, vol. 16 (7), pp. 648–56.

    Article  CAS  Google Scholar 

  11. W. Tan, Y. Zhou, and H.W. Kerr: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2667–76.

    Article  CAS  Google Scholar 

  12. M.I. Khan, J.M. Kim, M.L. Kuntz, and Y. Zhou: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 910–19.

    Article  CAS  Google Scholar 

  13. S. Fukumoto, T. Matsuo, H. Tsubakino, and A. Yamamoto: Mater. Trans., 2007, vol. 48 (4), pp. 813–20.

    Article  CAS  Google Scholar 

  14. G.S. Zou, Y.D. Huang, A. Pequegnat, X.G. Li, M.I. Khan, X.B. Hu, and Y. Zhou: Metall. Mater. Trans. A. DOI:10.1007/s11661-011-0763-3.

  15. Binary Alloy Phase Diagrams, T.B. Massalski, ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 3, p. 2344.

  16. L. Yu, K. Nakata, and J. Liao: Sci. Technol. Weld. Join., 2009, vol. 14 (6), pp. 554–58.

    Article  CAS  Google Scholar 

  17. S. Beretta and B. Previtali: Sci. Technol. Weld. Join., 2009, vol. 14 (2), pp. 106–16.

    Article  CAS  Google Scholar 

  18. A. Haboudou, P. Peyre, A.B. Vannes, and G. Peix: Mater. Sci. Eng. A, 2003, vol. A363, pp. 40–48.

    CAS  Google Scholar 

  19. A. Matsunawa, M. Mizutani, S. Katayama, and N. Seto: Weld. Int., 2002, vol. 17 (6), pp. 431–37.

    Article  Google Scholar 

  20. AWS Welding Handbook, 9th ed., vol. 3, Welding Processes Part 2, American Welding Society, Miami, FL, 2007.

  21. M. Pastor, H. Zhao, R.P. Martukanitz, and T. Debroy: Weld. J., 1999, vol. 78 (6), pp. 207s–216s.

    Google Scholar 

  22. X. He, T. DebRoy, and P.W. Fuerschbach: J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 3079–88.

    Article  CAS  Google Scholar 

  23. R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelley: Selected Values of Thermodynamic Properties of Metals and Alloys, John Wiley & Sons, Inc., New York, NY, 1963.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Program of Canada Research Chairs (CRC) in Microjoining (www.crc.gc.ca). A special thanks goes out to B. Tam for helping with the preparation of the welded samples. The help of Professor W.H.S. Lawson in reviewing this manuscript is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pequegnat.

Additional information

Manuscript submitted September 2, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y.D., Pequegnat, A., Zou, G.S. et al. Crossed-Wire Laser Microwelding of Pt-10 Pct Ir to 316 LVM Stainless Steel: Part II. Effect of Orientation on Joining Mechanism. Metall Mater Trans A 43, 1234–1243 (2012). https://doi.org/10.1007/s11661-011-1003-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1003-6

Keywords

Navigation