Skip to main content
Log in

Effect of Strain and Strain Path on Texture and Twin Development in Austenitic Steel with Twinning-Induced Plasticity

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-manganese (15 to 30 wt pct) austenitic steels exhibit extreme strain hardening because of twinning with increased strain. Twinning in these low stacking fault materials promotes retention of the austenitic microstructure and impedes dislocation motion. A dearth of information is available concerning the extent to which strain path influences twinning in so-called twinning-induced plasticity (TWIP) steels. The present study focuses on the influence of strain level and strain path on texture and twinning in a high-Mn content TWIP steel (Fe17.2Mn0.6C). Electron back-scatter diffraction was employed to measure the twin fraction, twin deviation, twin boundary length, grain misorientation, and volume fraction of different texture components as a function of both uniaxial and biaxial deformation. This information, which is part of the necessary first step toward linking crystallographic texture and twinning to mechanical properties, was used to quantitatively assess the extent to which these critical metallurgical features depend on the amount of straining and the strain path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.A. Jiménez and G. Frommeyer: Mater. Charact., 2010, vol. 61, pp. 221–26.

    Article  Google Scholar 

  2. F. de las Cuevas, M. Reis, A. Ferraiuolo, G. Pratolongo, L.P. Karjalainen, J. Alkorta, and J. Gil Sevillano: Key. Eng. Mater., 2009, vol. 423, pp. 147–52.

    Article  Google Scholar 

  3. C.D. Horvath and J.R. Fekete: Proc. Int. Conf. on Advanced High Strength Sheet Steels for Automotive Applications, 2004, pp. 3–10.

  4. J.E. Jin and Y.K. Lee: Mater. Sci. Eng. A, 2009, vol. 527A, pp. 157–61.

    Google Scholar 

  5. S. Allain, P. Cugy, C. Scott, J.P. Chateau, A. Rusinek, and A. Deschamps: Int. J. Mater. Res., 2008, vol. 99, pp. 734–38.

    Article  CAS  Google Scholar 

  6. B.C. De Cooman, L. Chen, H.S. Kim, Y. Estrin, S.K. Kim, and H. Voswinckel Microstructure and Texture in Steels, A. Halder, S. Suwas, and D. Bhattacharjee, eds., Springer, New York, NY, 2009, pp. 165–82.

    Chapter  Google Scholar 

  7. P. Zavattieri, V. Savic, L.G. Hector, Jr., J.R. Fekete, W. Tong, and Y. Xuan: Int. J. Plast., 2009, vol. 25, pp. 2298–330.

    Article  CAS  Google Scholar 

  8. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.

    Article  Google Scholar 

  9. S. Kim and H. Huh: Key. Eng. Mater., 2008, vols. 385–387, pp. 749–52.

    Article  Google Scholar 

  10. B. Qin and H.K.D.H. Bhadeshia: Mater. Sci. Tech., 2008, vol. 24, pp. 969–73.

    Article  CAS  Google Scholar 

  11. G. Krauss: Steels—Heat Treatment and Processing Principles, ASM International, Materials Park, OH, 1990.

    Google Scholar 

  12. M. Iker, D. Gaude-Fugarolas, P.J. Jacques, and F. Delannay: Adv. Mater. Res., 2007, vols. 115–117, pp. 852–67.

    Article  Google Scholar 

  13. S.K. Mishra, P. Pant, K. Narasimhan, and I. Samajdar: Ceramic Trans., 2008, vol. 200, pp. 257–63.

    Google Scholar 

  14. A.S. Hamada: Ph.D. Dissertation, University of Oulu, Linnanmaa, Finland, 2007.

  15. B. Qin: Master’s Thesis, Pohang University, Pohang, Kyungbuk, Republic of Korea, 2007.

  16. S. Cunningham: Master’s Thesis, McGill University, Montreal, CA, 1999.

  17. K. Renard, S. Ryelandt, and P.J. Jacques: Mater. Sci. Eng. A, 2010, vol. 527A, pp. 2969–77.

    Google Scholar 

  18. L. Chen, H.S. Kim, S.K. Kim, and B.C. De Cooman: ISIJ Int., 2007, vol. 47, pp. 1804–12.

    Article  CAS  Google Scholar 

  19. Y.N. Datsur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12A, pp. 749–59.

    Google Scholar 

  20. D. Cornette, P. Cugy, A. Hildebrand, and M. Bouzekri: SAE Paper 2005-01-1327, SAE International, Warrendale, PA, 2005.

    Google Scholar 

  21. K. Chung, K. Ahn, D.H. Yoo, K.H. Chung, and M.H. Seo: Int. J. Plast., 2011, vol. 27, pp. 52–81.

    Article  CAS  Google Scholar 

  22. C. Orosz, B. Palotás, and J. Dobránsky: Mater. Sci. Forum, 2007, vols. 537–538, pp. 431–38.

    Article  Google Scholar 

  23. W. Tong, H. Tao, X. Jiang, N. Zhang, M. Marya, L.G. Hector, Jr., and X.Q. Gayden: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2651–69.

    Article  CAS  Google Scholar 

  24. L. Mujica, S. Weber, H. Pinto, C. Thomy, and F. Vollersten: Mater. Sci. Eng. A, 2010, vol. 527A, pp. 2071–78.

    Google Scholar 

  25. P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang: Scripta Mater., 2006, vol. 55, pp. 629–31.

    Article  CAS  Google Scholar 

  26. L. Meng, P. Yang, Q. Xie, H. Ding, and Z. Tang: Scripta Mater., 2007, vol. 56, pp. 931–34.

    Article  CAS  Google Scholar 

  27. S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants: Acta Mater., 2004, vol. 52, pp. 2005–12.

    Article  CAS  Google Scholar 

  28. A.T. English and G.Y. Chin: Acta Metall., 1965, vol. 13, pp. 1013–16.

    Article  CAS  Google Scholar 

  29. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert: Mater. Sci. Eng. A, 2009, vol. 500A, pp. 196–206.

    Google Scholar 

  30. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527A, pp. 3552–60.

    Google Scholar 

  31. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464–76.

    Article  CAS  Google Scholar 

  32. J.B. Cohen and J. Weertman: Acta Metall., 1963, vol. 11, pp. 996–98.

    Article  CAS  Google Scholar 

  33. S. Miura, J. Takamura, and N. Narita: Trans. Jpn. Inst. Met., 1968, vol. 9, pp. 555–62.

    CAS  Google Scholar 

  34. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, and J.P. Hirth: Acta Mater., 2010, vol. 58, pp. 2262–70.

    Article  CAS  Google Scholar 

  35. S.K. Kim, J. Choi, S.C. Kang, I.R. Shon, and K.G. Chin: The Development of TWIP Steel for Automotive Application, POSCO TECHNICAL REPORT, 2006, vol. 10 (1), pp. 106–14. http://www.posco.com/homepage/docs/eng/dn/company/product/3.Development%20of%20TWIP%20Steel%20for%20Automotive%20Application.pdf.

  36. S.S. Hecker: Mech. Eng. Quart., 1974, vol. 14, pp. 30–36.

    Google Scholar 

  37. S.S. Hecker: Sheet Metal Industries, 1975, vol. 58, pp. 671–76.

    Google Scholar 

  38. S.P. Keeler: Sheet Metal Industries, 1965, vol. 42, pp. 683–91.

    Google Scholar 

  39. http://www.gom.com/metrologysystems/system-overview.

  40. http://www.panalytical.com/index.cfm?pid=321.

  41. P. Van Houtte: Manual of MTM-FHM, ed., MTM-KU, Leuven, Belgium, 1995.

  42. H.J. Bunge: Texture Analysis in Materials Science: Mathematcial Methods, Butterworth, London, UK, 1982.

    Google Scholar 

  43. S.K. Yerra, B. Verlinden, and P. Van Houtte: Mater. Sci. Forum, 2005, vols. 495–497, pp. 913–18.

    Article  Google Scholar 

  44. J. Hirsch and K. Lücke: Acta Metall., 1998, vol. 36, pp. 2863–82.

    Google Scholar 

  45. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  46. E. Aernoudt, P. Van Houtte, and T. Leffers: Plastic Deformation and Fracture of Materials (vol. 6 of Materials Science and Technology: A Comprehensive Treatment, ed. by R.W. Cahn, P. Haasen, and E.J. Kramer), ed. by H. Mughrabi. Weinheim, Federal Republic of Germany: VCH, 1993, pp. 89–136.

  47. L.S. Toth and P. Van Houte: Textures Microstruct., 1992, vol. 19, pp. 229–44.

    Article  Google Scholar 

  48. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  49. M. Kronberg and F. Wilson: Trans. AIME, 1949, vol. 185, pp. 501–14.

    Google Scholar 

  50. B.L. Henrie, T.A. Mason, and B.L. Hansen: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3745–41.

    Article  CAS  Google Scholar 

  51. S.K Mishra, K. Narasimhan, and I. Samajdar: Mater. Sci. Technol., 2007, vol. 23, pp. 1118–26.

    Article  CAS  Google Scholar 

  52. J.A. Venables: J. Phys. Chem. Solids, 1964, vol. 25, pp. 693–700.

    Article  CAS  Google Scholar 

  53. M.A. Meyers, D.J. Benson, O. Vöhringer, B.K Kad, Q. Xue, and H.H. Fu: Mater. Sci. Eng. A, 2002, vol. 322, pp. 194–216.

    Article  Google Scholar 

  54. E.B. Tadmor and N. Bernstein: J. Mech. Phys. Solids, 2004, vol. 52, pp. 2507–19.

    Article  CAS  Google Scholar 

  55. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Pergamon Materials Series – series, R.W. Cahn, ed., Elsevier, Amsterdam, The Netherlands, 2007.

    Google Scholar 

  56. T.S. Byun, N. Hashimoto, and K. Farrell: J. Nucl. Mater., 2006, vol. 351, pp. 303–15.

    Article  CAS  Google Scholar 

  57. N. Hashimoto, S.J. Zinkle, A.F. Rowcliffe, J.P. Robertson, and S. Jituskawa: J. Nucl. Mater., 2000, vols. 283–287, pp. 528–34.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the use of the National Facility of Texture & OIM (a DST-IRPHA facility), IIT Bombay for bulk texture measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Mishra.

Additional information

Manuscript submitted April 19, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S.K., Tiwari, S.M., Kumar, A.M. et al. Effect of Strain and Strain Path on Texture and Twin Development in Austenitic Steel with Twinning-Induced Plasticity. Metall Mater Trans A 43, 1598–1609 (2012). https://doi.org/10.1007/s11661-011-0999-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0999-y

Keywords

Navigation