Skip to main content

Advertisement

Log in

Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part I. Mechanism Maps and Work-Hardening Behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermodynamic stacking fault energy (SFE) maps were developed using the subregular solution model for the Fe-Mn-Al-C system. These maps were used to explain the variations in the work-hardening behavior of high-manganese steels, both through experiments and by comparison with the published data. The suppression of the transformation induced plasticity (TRIP) mechanism, the similarity between the shape of the work-hardening rate diagrams for the produced iso-SFE materials, and an earlier onset of stage C of work hardening by decreasing SFE were shown to be efficiently predictable by the given mechanism maps. To overcome the limitations arising from studying the deformation response of high-manganese steels by SFE values alone, for example, the different work-hardening rate of iso-SFE materials, an empirical criterion for the occurrence of short-range ordering (SRO) and the consequently enhanced work-hardening, was proposed. The calculated values based on this criterion were superimposed on the thermodynamics-based mechanism maps to establish a more accurate basis for material design in high-manganese iron-based systems. Finally, the given methodology is able to clarify the work-hardening behavior of high-manganese twinning induced plasticity (TWIP) steels across an extensive range of chemical compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, pp. 627–33.

    CAS  Google Scholar 

  2. O. Grässel, L. Kruger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  3. S. Allain, J.-P. Chateau, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 143–47.

    Google Scholar 

  4. O. Bouaziz, S. Allain, and C. Scott: Scripta Mater., 2008, vol. 58, pp. 484–87.

    Article  CAS  Google Scholar 

  5. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–90.

    Article  CAS  Google Scholar 

  6. J. Nakano and P.J. Jacques: CALPHAD, 2010, vol. 34, pp. 167–75.

    Article  CAS  Google Scholar 

  7. S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, and H. Hänninen: Acta Mater., 2011, vol. 59, pp. 1068–76.

    Article  CAS  Google Scholar 

  8. O. Bouaziz, C.P. Scott, and G. Petitgand: Scripta Mater., 2009, vol. 60, pp. 714–16.

    Article  CAS  Google Scholar 

  9. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  10. H. Idrissi, L. Ryelandt, M. Veron, D. Schryversa, and P.J. Jacques: Scripta Mater., 2009, vol. 60, pp. 941–44.

    Article  CAS  Google Scholar 

  11. L. Remy: Scripta Metall. Mater., 1977, vol. 11 (3), pp. 169–72.

    CAS  Google Scholar 

  12. L. Remy: Acta Metall., 1978, vol. 26, pp. 443–51.

    Article  CAS  Google Scholar 

  13. L. Remy and A. Pineau: Mater. Sci. Eng. A, 1977, vol. 28, pp. 99–107.

    Article  CAS  Google Scholar 

  14. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–63.

    Article  CAS  Google Scholar 

  15. S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu: Acta Mater., 2007, vol. 55, pp. 6843–51.

    Article  CAS  Google Scholar 

  16. H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques: Scripta Mater., 2010, vol. 63, pp. 961–64.

    Article  CAS  Google Scholar 

  17. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464–76.

    Article  CAS  Google Scholar 

  18. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43 (3), pp. 438–46.

    Article  CAS  Google Scholar 

  19. H. Ding, Z. Tang, W. Li, M. Wang, and D. Song: J. Iron Steel Res. Int., 2006, vol. 13 (6), pp. 66–70.

    Article  CAS  Google Scholar 

  20. A. Saeed-Akbari: Mechanism Maps, Mechanical Properties, and Flow Behavior in High-Manganese TRIP/TWIP and TWIP Steels, Shaker Verlag, Aachen, 2011.

  21. Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 355–60.

    Article  CAS  Google Scholar 

  22. G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2759–63.

    Article  Google Scholar 

  23. T.S. Byun: Acta Mater., 2003, vol. 51, pp. 3063–71.

    Article  CAS  Google Scholar 

  24. O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 246–49.

    Google Scholar 

  25. L. Chen, Han-soo Kim, Sung-Kyu Kim, and B.C. De-Cooman: ISIJ Int., 2007, vol. 47, pp. 1804–12.

  26. P.H. Adler, G.B. Olsen, and W.S. Owen: Metall. Trans. A, 1986, vol. 17A, pp. 1725–37.

    Article  CAS  Google Scholar 

  27. L.G. Stepanskiy: Scripta Mater., 2009, vol. 61, pp. 947–50.

    Article  CAS  Google Scholar 

  28. V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177–83.

    Article  CAS  Google Scholar 

  29. J.D. Yoo and K. Park: Mater. Sci. Eng. A, 2008, vol. 496, pp. 417–24.

    Article  Google Scholar 

  30. J.D. Yoo, S.W. Hwang, and K. Park: Mater. Sci. Eng. A, 2009, vol. 508, pp. 234–40.

    Article  Google Scholar 

  31. K. Choi, C. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K. Park, and N.J. Kim: Scripta Mater., 2010, vol. 63, pp. 1028–31.

    Article  CAS  Google Scholar 

  32. Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12A, pp. 749–59.

    Google Scholar 

  33. B.K. Zuidema, D.K. Subramanyam, and W.C. Leslie: Metall. Mater. Trans. A, 1987, vol. 18A, pp. 1629–39.

    CAS  Google Scholar 

  34. T. Shun, C.M. Wan, and J.G. Byrne: Acta Metall. Mater., 1992, vol. 50 (12), pp. 3407–12.

    Google Scholar 

  35. J. Kim, L. Chen, H. Kim, S.K. Kim, Y. Estrin, and B.C. De-Cooman: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3147–58.

    Article  CAS  Google Scholar 

  36. J. Kim, S.J. Lee, and B.C. De-Cooman: Scripta Mater., 2011, vol. 65, pp. 363–66.

    Article  CAS  Google Scholar 

  37. K. Renard, S. Ryelandt, and P.J. Jacques: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2969–77.

    Article  Google Scholar 

  38. E. Bayraktar, C. Levaillant, and S. Altintas: J. Phys. IV, 1993, vol. 3, pp. 61–66.

    Article  CAS  Google Scholar 

  39. Annual Book of ASTM Standards, ASTM INTERNATIONAL, Philadelphia, PA, 2004, vol. 3, No. 01, E112-96, p. 227.

  40. A.T. Dinsdale: CALPHAD, 1991, vol. 15 (4), pp. 317–425.

    Article  CAS  Google Scholar 

  41. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 158–62.

    Google Scholar 

  42. A.S. Hamada: Doctoral Thesis, University of Oulu, Oulu, Finland, 2007.

  43. S. Vercammen: Doctoral Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2004.

  44. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid St. M., 2011, vol. 15 (4), pp. 141–68.

    Article  CAS  Google Scholar 

  45. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, and H.J. Maier: JOM, 2002, July, pp. 31–37.

  46. H. Suzuki: J. Phys. Soc. Jpn., 1962, vol. 17 (2), pp. 322–25.

    Article  CAS  Google Scholar 

  47. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, and I.V. Kireeva: Scripta Mater., 2001, vol. 44, pp. 337–43.

    Article  CAS  Google Scholar 

  48. Y.N. Petrov: Scripta Mater., 2005, vol. 53, pp. 1201–06.

    Article  CAS  Google Scholar 

  49. K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3651–61.

    Article  Google Scholar 

  50. W.S. Owen and M. Grujicic: Acta Mater., 1999, vol. 47 (1), pp. 111–26.

    Article  CAS  Google Scholar 

  51. J. Kim, Y. Estrin, H. Beladi, S. Kim, K. Chin, and B.C. De Cooman: Mater. Sci. Forum, 2010, vols. 654–656, pp. 270–73.

    Article  Google Scholar 

  52. Y. Estrin and L.P. Kubin: Acta Metall., 1986, vol. 34, pp. 2455–64.

    Article  Google Scholar 

  53. L.P. Kubin and Y. Estrin: Acta Metall., 1990, vol. 38, pp. 697–708.

    Article  CAS  Google Scholar 

  54. O. Bouaziz, H. Zurob, B. Chehab, J.D. Embury, S. Allain, and M. Huang: Mater. Sci. Technol., 2011, vol. 27 (3), pp. 707–09.

    Article  CAS  Google Scholar 

  55. J. von Appen and R. Dronskowski: Steel Res. Int., 2011, vol. 82 (2), pp. 101–07.

    Article  Google Scholar 

  56. E.P. Kwon, S. Fujieda, K. Shinoda, and S. Suzuki: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5007–17.

    Article  CAS  Google Scholar 

  57. R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert: Mater. Sci. Eng. A, 2007, vol. 447, pp. 285–97.

    Article  Google Scholar 

  58. A. Weidner, S. Martin, V. Klemm, U. Martin, and H. Biermann: Scripta Mater., 2011, vol. 64, pp. 513–16.

    Article  CAS  Google Scholar 

  59. D.R. Steinmetz and S. Zaefferer: Mater. Sci. Technol., 2010, vol. 26 (6), pp. 640–45.

    CAS  Google Scholar 

  60. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humber: Mater. Sci. Eng. A, 2009, vol. 500, pp. 196–206.

    Article  Google Scholar 

  61. A.S. Hamada, L.P. Karjalainen, A. Ferraiuolo, J.G. Sevillano, F.D.L. Cuevas, G. Pratolongo, and M. Reis: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1102–08.

    Article  CAS  Google Scholar 

  62. M.R. Barnett: Scripta Mater., 2008, vol. 59, pp. 696–98.

    Article  CAS  Google Scholar 

  63. Y.N. Petrov: Z. Metallkd., 2003, vol. 94 (9), pp. 1012–16.

    CAS  Google Scholar 

  64. A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Metall. Mater. Trans. A, 2008, vols. 483–484, pp. 184–87.

    Google Scholar 

  65. L. Remy, A. Pineau, and B. Thomas: Mater. Sci. Eng., 1978, vol. 36, pp. 47–63.

    Article  CAS  Google Scholar 

  66. G.W. Han, I.P. Jones, and R.E. Smallman: Acta Mater., 2003, vol. 51, pp. 2731–42.

    Article  CAS  Google Scholar 

  67. A. Herschitz and D.N. Seidman: Acta Metall., 1985, vol. 33 (8), pp. 1547–63.

    Article  CAS  Google Scholar 

  68. J.C. Fisher: Acta Metall., 1954, vol. 2 (3), pp. 368–69.

    Article  CAS  Google Scholar 

  69. P.A. Flinn: Acta Metall., 1958, vol. 6 (10), pp. 631–35.

    Article  CAS  Google Scholar 

  70. S. Asgari, E. El-Danaf, E. Shaji, S.R. Kalidindi, and R.D. Doherty: Acta Mater., 1998, vol. 46 (16), pp. 5795–5806.

    Article  CAS  Google Scholar 

  71. Y. Tomokiyo, N. Kuwano, and T. Eguchi: Trans. JIM, 1975, vol. 16, pp. 489–99.

    Google Scholar 

  72. G. Thomas: Acta Metall., 1963, vol. 11, pp. 1369–71.

    Article  CAS  Google Scholar 

  73. J.M. Popplewell and J. Crane: Metall. Trans., 1971, vol. 2, pp. 3411–20.

    Article  CAS  Google Scholar 

  74. I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov: Acta Mater., 2001, vol. 49, pp. 3919–33.

    Article  CAS  Google Scholar 

  75. J.W. Christian: The Theory of Transformations in Metals and Alloys, 1st ed., Pergamon Press Ltd., Oxford, United Kingdom, 1965, pp. 743–77.

    Google Scholar 

  76. R. Ueji, N. Tsushida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige: Scripta Mater., 2008, vol. 59, pp. 963–66.

    Article  CAS  Google Scholar 

  77. B.X. Huang, X.D. Wang, and Y.H. Rong: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 717–24.

    Article  CAS  Google Scholar 

  78. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552–60.

    Article  Google Scholar 

  79. P.Y. Volosevich, V.N. Grindnev, and Y.N. Petrov: Phys. Met. Metallogr., 1976, vol. 42, pp. 126–30.

    Google Scholar 

  80. S. Asgari, E. El-Danaf, S.R. Kalidindi, and R. Doherty: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1781–94.

    Article  CAS  Google Scholar 

  81. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (SFB) 761 “Steel–ab initio.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saeed-Akbari.

Additional information

Manuscript submitted August 16, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed-Akbari, A., Mosecker, L., Schwedt, A. et al. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part I. Mechanism Maps and Work-Hardening Behavior. Metall Mater Trans A 43, 1688–1704 (2012). https://doi.org/10.1007/s11661-011-0993-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0993-4

Keywords

Navigation