Abstract
Thermodynamic stacking fault energy (SFE) maps were developed using the subregular solution model for the Fe-Mn-Al-C system. These maps were used to explain the variations in the work-hardening behavior of high-manganese steels, both through experiments and by comparison with the published data. The suppression of the transformation induced plasticity (TRIP) mechanism, the similarity between the shape of the work-hardening rate diagrams for the produced iso-SFE materials, and an earlier onset of stage C of work hardening by decreasing SFE were shown to be efficiently predictable by the given mechanism maps. To overcome the limitations arising from studying the deformation response of high-manganese steels by SFE values alone, for example, the different work-hardening rate of iso-SFE materials, an empirical criterion for the occurrence of short-range ordering (SRO) and the consequently enhanced work-hardening, was proposed. The calculated values based on this criterion were superimposed on the thermodynamics-based mechanism maps to establish a more accurate basis for material design in high-manganese iron-based systems. Finally, the given methodology is able to clarify the work-hardening behavior of high-manganese twinning induced plasticity (TWIP) steels across an extensive range of chemical compositions.
Similar content being viewed by others
Notes
JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.
References
G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, pp. 627–33.
O. Grässel, L. Kruger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.
S. Allain, J.-P. Chateau, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 143–47.
O. Bouaziz, S. Allain, and C. Scott: Scripta Mater., 2008, vol. 58, pp. 484–87.
A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–90.
J. Nakano and P.J. Jacques: CALPHAD, 2010, vol. 34, pp. 167–75.
S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, and H. Hänninen: Acta Mater., 2011, vol. 59, pp. 1068–76.
O. Bouaziz, C.P. Scott, and G. Petitgand: Scripta Mater., 2009, vol. 60, pp. 714–16.
J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.
H. Idrissi, L. Ryelandt, M. Veron, D. Schryversa, and P.J. Jacques: Scripta Mater., 2009, vol. 60, pp. 941–44.
L. Remy: Scripta Metall. Mater., 1977, vol. 11 (3), pp. 169–72.
L. Remy: Acta Metall., 1978, vol. 26, pp. 443–51.
L. Remy and A. Pineau: Mater. Sci. Eng. A, 1977, vol. 28, pp. 99–107.
S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–63.
S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu: Acta Mater., 2007, vol. 55, pp. 6843–51.
H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques: Scripta Mater., 2010, vol. 63, pp. 961–64.
H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464–76.
G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43 (3), pp. 438–46.
H. Ding, Z. Tang, W. Li, M. Wang, and D. Song: J. Iron Steel Res. Int., 2006, vol. 13 (6), pp. 66–70.
A. Saeed-Akbari: Mechanism Maps, Mechanical Properties, and Flow Behavior in High-Manganese TRIP/TWIP and TWIP Steels, Shaker Verlag, Aachen, 2011.
Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 355–60.
G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2759–63.
T.S. Byun: Acta Mater., 2003, vol. 51, pp. 3063–71.
O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 246–49.
L. Chen, Han-soo Kim, Sung-Kyu Kim, and B.C. De-Cooman: ISIJ Int., 2007, vol. 47, pp. 1804–12.
P.H. Adler, G.B. Olsen, and W.S. Owen: Metall. Trans. A, 1986, vol. 17A, pp. 1725–37.
L.G. Stepanskiy: Scripta Mater., 2009, vol. 61, pp. 947–50.
V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177–83.
J.D. Yoo and K. Park: Mater. Sci. Eng. A, 2008, vol. 496, pp. 417–24.
J.D. Yoo, S.W. Hwang, and K. Park: Mater. Sci. Eng. A, 2009, vol. 508, pp. 234–40.
K. Choi, C. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K. Park, and N.J. Kim: Scripta Mater., 2010, vol. 63, pp. 1028–31.
Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12A, pp. 749–59.
B.K. Zuidema, D.K. Subramanyam, and W.C. Leslie: Metall. Mater. Trans. A, 1987, vol. 18A, pp. 1629–39.
T. Shun, C.M. Wan, and J.G. Byrne: Acta Metall. Mater., 1992, vol. 50 (12), pp. 3407–12.
J. Kim, L. Chen, H. Kim, S.K. Kim, Y. Estrin, and B.C. De-Cooman: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3147–58.
J. Kim, S.J. Lee, and B.C. De-Cooman: Scripta Mater., 2011, vol. 65, pp. 363–66.
K. Renard, S. Ryelandt, and P.J. Jacques: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2969–77.
E. Bayraktar, C. Levaillant, and S. Altintas: J. Phys. IV, 1993, vol. 3, pp. 61–66.
Annual Book of ASTM Standards, ASTM INTERNATIONAL, Philadelphia, PA, 2004, vol. 3, No. 01, E112-96, p. 227.
A.T. Dinsdale: CALPHAD, 1991, vol. 15 (4), pp. 317–425.
S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 158–62.
A.S. Hamada: Doctoral Thesis, University of Oulu, Oulu, Finland, 2007.
S. Vercammen: Doctoral Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2004.
O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid St. M., 2011, vol. 15 (4), pp. 141–68.
I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, and H.J. Maier: JOM, 2002, July, pp. 31–37.
H. Suzuki: J. Phys. Soc. Jpn., 1962, vol. 17 (2), pp. 322–25.
I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, and I.V. Kireeva: Scripta Mater., 2001, vol. 44, pp. 337–43.
Y.N. Petrov: Scripta Mater., 2005, vol. 53, pp. 1201–06.
K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3651–61.
W.S. Owen and M. Grujicic: Acta Mater., 1999, vol. 47 (1), pp. 111–26.
J. Kim, Y. Estrin, H. Beladi, S. Kim, K. Chin, and B.C. De Cooman: Mater. Sci. Forum, 2010, vols. 654–656, pp. 270–73.
Y. Estrin and L.P. Kubin: Acta Metall., 1986, vol. 34, pp. 2455–64.
L.P. Kubin and Y. Estrin: Acta Metall., 1990, vol. 38, pp. 697–708.
O. Bouaziz, H. Zurob, B. Chehab, J.D. Embury, S. Allain, and M. Huang: Mater. Sci. Technol., 2011, vol. 27 (3), pp. 707–09.
J. von Appen and R. Dronskowski: Steel Res. Int., 2011, vol. 82 (2), pp. 101–07.
E.P. Kwon, S. Fujieda, K. Shinoda, and S. Suzuki: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5007–17.
R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert: Mater. Sci. Eng. A, 2007, vol. 447, pp. 285–97.
A. Weidner, S. Martin, V. Klemm, U. Martin, and H. Biermann: Scripta Mater., 2011, vol. 64, pp. 513–16.
D.R. Steinmetz and S. Zaefferer: Mater. Sci. Technol., 2010, vol. 26 (6), pp. 640–45.
D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humber: Mater. Sci. Eng. A, 2009, vol. 500, pp. 196–206.
A.S. Hamada, L.P. Karjalainen, A. Ferraiuolo, J.G. Sevillano, F.D.L. Cuevas, G. Pratolongo, and M. Reis: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1102–08.
M.R. Barnett: Scripta Mater., 2008, vol. 59, pp. 696–98.
Y.N. Petrov: Z. Metallkd., 2003, vol. 94 (9), pp. 1012–16.
A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Metall. Mater. Trans. A, 2008, vols. 483–484, pp. 184–87.
L. Remy, A. Pineau, and B. Thomas: Mater. Sci. Eng., 1978, vol. 36, pp. 47–63.
G.W. Han, I.P. Jones, and R.E. Smallman: Acta Mater., 2003, vol. 51, pp. 2731–42.
A. Herschitz and D.N. Seidman: Acta Metall., 1985, vol. 33 (8), pp. 1547–63.
J.C. Fisher: Acta Metall., 1954, vol. 2 (3), pp. 368–69.
P.A. Flinn: Acta Metall., 1958, vol. 6 (10), pp. 631–35.
S. Asgari, E. El-Danaf, E. Shaji, S.R. Kalidindi, and R.D. Doherty: Acta Mater., 1998, vol. 46 (16), pp. 5795–5806.
Y. Tomokiyo, N. Kuwano, and T. Eguchi: Trans. JIM, 1975, vol. 16, pp. 489–99.
G. Thomas: Acta Metall., 1963, vol. 11, pp. 1369–71.
J.M. Popplewell and J. Crane: Metall. Trans., 1971, vol. 2, pp. 3411–20.
I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov: Acta Mater., 2001, vol. 49, pp. 3919–33.
J.W. Christian: The Theory of Transformations in Metals and Alloys, 1st ed., Pergamon Press Ltd., Oxford, United Kingdom, 1965, pp. 743–77.
R. Ueji, N. Tsushida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige: Scripta Mater., 2008, vol. 59, pp. 963–66.
B.X. Huang, X.D. Wang, and Y.H. Rong: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 717–24.
I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552–60.
P.Y. Volosevich, V.N. Grindnev, and Y.N. Petrov: Phys. Met. Metallogr., 1976, vol. 42, pp. 126–30.
S. Asgari, E. El-Danaf, S.R. Kalidindi, and R. Doherty: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1781–94.
I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–62.
Acknowledgment
The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (SFB) 761 “Steel–ab initio.”
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted August 16, 2010.
Rights and permissions
About this article
Cite this article
Saeed-Akbari, A., Mosecker, L., Schwedt, A. et al. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part I. Mechanism Maps and Work-Hardening Behavior. Metall Mater Trans A 43, 1688–1704 (2012). https://doi.org/10.1007/s11661-011-0993-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-011-0993-4