Skip to main content
Log in

Electrochemical Removal of AlCl3 from LiCl-KCl Melts

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to remove impurity AlCl3 from LiCl-KCl melts before Li electrolysis, the Al3+ reduction potential on a tungsten electrode and the relation between Al3+ reduction peak current and AlCl3 concentration in LiCl-KCl-AlCl3 melts were determined by cyclic voltammetry (CV). Constant potential electrolysis at –1.6 V vs Cl2/Cl on both solid Fe and liquid Zn cathodes was performed to remove AlCl3 impurity from the LiCl-KCl-AlCl3 melts. The removal rate of Al3+ from the melts was analyzed by both electrochemical methods and inductively coupled plasma–atomic emission spectrometry (ICP-AES) analysis. The results showed that 96.11 wt pct of Al were removed on a Fe cathode and 99.90 wt pct on a Zn cathode through 10 hours electrolysis, respectively. While stirring the melts by argon gas, 99.21 wt pct of Al3+ was separated from the melts by 4 hours of electrolysis at 723 K (450 °C), which effectively expedited the Al3+ electrochemical reduction rate and shortened the electrolysis time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.A. Averill and D.L. Olson: Int. J. Energy Res., 1978, vol. 3 (3), pp. 305–13.

    CAS  Google Scholar 

  2. P.A. Mahi, A.J. Smeets, D.J. Fray, and J.A. Charles: J. Met., 1986, vol. 38 (11), pp. 20–26.

    CAS  Google Scholar 

  3. W.E. Cowley: Molten Salt Technology, D.G. Lovering, ed., Plenum Press, New York, NY, 1982, pp. 215–18.

  4. P.E. Landolt: Rare Metals Handbook, C.A. Hampel Reinhold Press, New York, NY, 1954, pp. 136–38.

    Google Scholar 

  5. C.L. Mantel: Electrochemical Engineering, McGraw-Hill Press, New York, NY, 1960, pp. 56–59.

    Google Scholar 

  6. G.T. Motock: Electrochem. Technol., 1963, vol. 1, pp. 122–28.

    CAS  Google Scholar 

  7. S. Shen: Molten Salts Electrochemical Theory Foundation, China Industrial Press, Beijing, 1963, pp. 98–102.

    Google Scholar 

  8. W.L. Chen, L.Y. Chai, X.B. Min, B. Yang, Y.N. Dai, X. Yu, and C.F. Zhang: Trans. Nonferrous Met. Soc. China, 2002, vol. 1, pp. 152–55.

    Google Scholar 

  9. W.L. Chen, L.Y. Chai, X.B. Min, B. Yang, Y.N. Dai, X. Yu, and C.F. Zhang: Trans. Nonferrous Met. Soc. China, 2001, vol. 6, pp. 937–41.

    Google Scholar 

  10. H. Lan: Xinjiang Youse Jinshu, 1996, vol. 8, pp. 55–57.

    Google Scholar 

  11. T.P. Lou, D.G. Li, R. Pan, and H.P. Zhang: Acta Phys. Chim. Sinica, 2003, vol. 19, pp. 839–43.

    CAS  Google Scholar 

  12. J. Gulens, B.W. Hildebrandt, J.D. Canaday, A.K. Kuriakose, T.A. Weat, and A. Ahmad: Solid State Ionics, 1989, vol. 35 (1–2), pp. 45–49.

    Article  Google Scholar 

  13. Z.N. Jin, X.M. Li, W.J. Lan, and X.R. Liu: J. Northeast. Univ. (Nat. Sci.), 2006, vol. 27 (11), pp. 1251–54.

    CAS  Google Scholar 

  14. Y.D. Yan, M.L. Zhang, Y.X.W. Han, D.X. Cao, and L.Y. He: J. Appl. Electrochem., 2009, vol. 39, pp. 455–46.

    Article  CAS  Google Scholar 

  15. J. Bouteillon and A. Marguier: Surf. Coat. Technol., 1984, vol. 22 (3), pp. 205–17.

    CAS  Google Scholar 

  16. M. Gabčo, P. Fellner, and Ž. Lubyová: Electrochim. Acta, 1984, vol. 29 (3), pp. 397–401.

    Article  Google Scholar 

  17. Y.J. Zhang, A. Bjørgum, U. Erikson, R. Tunold, and R. Ødegård: J. Electroanal. Chem. Interface, 1986, vol. 210 (1), pp. 127–36.

    Article  CAS  Google Scholar 

  18. X. Qi and H.M. Zhu: Basic Study of Electrochemical Co-Deposition of Mg-Al Alloy in Alkali Chloride Melt, University of Science and Technology Beijing Press, Beijing, 2004, pp. 26–27.

    Google Scholar 

  19. Q.Q. Yang, B.L. Fang, and Y.X. Tong: J. Appl. Electrochem., 2nd ed., Zhongshan University Press, Guangzhou, 2005, pp. 49–55.

    Google Scholar 

  20. T. Berzins and P. Delahay: J. Am. Chem. Soc., 1953, vol. 75 (3), pp. 555–59.

    Article  CAS  Google Scholar 

  21. R. Ødegard, A. Bjørgum, A. Sterten, J. Thonstad, and R. Tunold: Electrochim. Acta, 1982, vol. 27 (11), pp. 1595–98.

    Article  Google Scholar 

  22. R.P. Elliot: Phase Diagram, McGraw-Hill Press, New York, NY, 1965, pp. 381–88.

    Google Scholar 

  23. J.Q. Yu, W.Z. Yi, B.D. Chen, and H.J. Chen: Binary Alloy Phase-Diagrams, Shanghai Science and Technology Press, Shanghai, 1983, pp. 140–63.

    Google Scholar 

  24. A.E. Herrera-Erazo, H. Habazaki, K. Shimizu, P. Skeldon, and G.E. Thompson: Corros. Sci., 2000, vol. 42 (10), pp. 1823–30.

    Article  CAS  Google Scholar 

  25. M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal, and M.G. Mahjani: J. Solid State Electrochem., 2009, vol. 13 (8), pp. 1171–79.

    Article  CAS  Google Scholar 

  26. Z.X. Qiu: Principle and Application of Aluminum Electrolysis, Chinese Mining Industrial University Press, Suzhou, 1998, pp. 567–689.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the 863 projects of the Ministry of Science and Technology of China (Grant No. 2009AA06Z102), the Key Program of the National Natural Science Foundation (Grant No. 50934001), and the National Natural Science Foundation (Grant No. 51054004); we also appreciate the support of the Key Laboratory of Chemical Engineering, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Li.

Additional information

Manuscript submitted September 5, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, M., Li, B., Li, S.Z. et al. Electrochemical Removal of AlCl3 from LiCl-KCl Melts. Metall Mater Trans A 43, 1662–1669 (2012). https://doi.org/10.1007/s11661-011-0982-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0982-7

Keywords

Navigation