Skip to main content
Log in

Experimental and Theoretical Measurements of the Evolution of Embryos Before and During the Nucleation Stage

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The early precipitation of a Cu-Ni-P alloy during aging for 100 ks at 523 K and 623 K (250 °C and 350 °C) after solution treatment has been characterized using a three-dimensional atom probe (3DAP) and transmission electron microscopy (TEM). It is shown that the particles have a wide range of Ni/P ratios when they are relatively small, whereas larger ones exhibit a narrow distribution of the Ni/P ratio, approaching the ratio of approximately two. The threshold radii that show the steady Ni/P ratio are around 1.5 nm and 2.0 nm for the materials aged at 523 K and 623 K (250 °C and 350 °C), respectively. These values are in a reasonably good agreement with the critical nuclei radius estimated from classic nucleation theory. It is suggested that the particles with steady Ni/P ratios of approximately two are considered to be the equilibrium precipitates formed through nucleation, whereas the extremely fine particles with varying Ni/P ratios, detected by the 3DAP experiments, indicate subcritical clusters or embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Miyake and M.E. Fine: Acta Metall. Mater., 1992, vol. 40, pp. 733-41.

    Article  CAS  Google Scholar 

  2. J. Miyake, G. Ghosh, and M.E. Fine: MRS Bull., 1996, vol. 21, pp. 13-18.

    CAS  Google Scholar 

  3. W.H. Tian, C.K. Yan, and M. Nemoto: Acta Metall. Sinica, 2003, vol. 16, pp. 155-60.

    CAS  Google Scholar 

  4. M. Murayama, A. Belyakov, T. Hara, Y. Sasaki, K. Tsuzaki, M. Okubo, M. Eto, and T. Kimura: J. Electron. Mater., 2006, vol. 35, pp. 1787-92.

    Article  CAS  Google Scholar 

  5. J.-S. Byun, J.H. Choi, and D.N. Lee: Scripta Mater., 2000, vol. 42, pp. 637-43.

    Article  CAS  Google Scholar 

  6. M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith: Atom Probe Field Ion Microscopy, Oxford University Press, Oxford, UK, 1996.

    Google Scholar 

  7. M.K. Miller: Atom Probe Tomography, Kluwer Academic/Plenum Publishers, New York, NY, 2000.

    Book  Google Scholar 

  8. Y. Aruga, D.W. Saxey, E.A. Marquis, H. Shishido, Y. Sumino, A. Cerezo, and G. D.W. Smith: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2888-2900.

    Article  CAS  Google Scholar 

  9. Y. Aruga, D.W. Saxey, E.A. Marquis, H. Shishido, Y. Sumino, A. Cerezo, and G.D.W. Smith: Mater. Trans., 2010, vol. 51, pp. 1802-08.

    Article  CAS  Google Scholar 

  10. Y. Aruga, D.W. Saxey, E.A. Marquis, A. Cerezo, and G.D.W. Smith: Ultramicroscopy, 2011, vol. 111, pp. 725-29.

    Article  CAS  Google Scholar 

  11. S. Rundqvist and E. Larsson: Acta Chem. Scand., 1959, vol. 13, pp. 551-60.

    Article  CAS  Google Scholar 

  12. D.G. Brandon: Phil. Mag., 1966, vol. 14, pp. 803-20.

    Article  CAS  Google Scholar 

  13. J.A. Panitz, S.B. McLane, and E.W. Muller: Rev. Sci. Instrum., 1969, vol. 40, pp. 1321-24.

    Article  CAS  Google Scholar 

  14. J.M. Hyde: Ph.D. Dissertation, Oxford University, Oxford, UK, 1993.

  15. J.M. Hyde and C.A. English: Materials Research Symposia, G.E. Lucas, L. Snead, M.A. Kirk, and R.G. Elliman, eds., Materials Research Society, Pittsburgh, PA, 2001, vol. 650, p. R6.6.

  16. M. Hino, H. Shishido, Y. Aruga, S. Namba, S. Iikubo, and H. Ohtani: Collected Abstracts of the 2010 Autumn Meeting of Japan Inst. Metals, Japan Inst. Metals, Sendai, Japan, 2010, p. 444.

  17. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Co. Ltd., UK, 1981, p. 266.

    Google Scholar 

  18. R. Becker and W. Doring: Ann. Phys., 1935, vol. 24, p. 719.

    Article  CAS  Google Scholar 

  19. H.I. Aaronson: Lectures on the Theory of Phase Transformations, AIME, New York, NY, 1975, p. 24.

    Google Scholar 

  20. J.M. Howe: Interfaces in Materials, Wiley, New York, NY, 1997, p. 378.

    Google Scholar 

  21. H. Fujiwara: Furukawa Review, 2001, vol. 108, pp. 47-54.

    CAS  Google Scholar 

  22. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, p. 153-90.

    Article  CAS  Google Scholar 

  23. T. Minote and S. Torizuka: Use of Fine Inclusions in Microstructure Control of Steels–Literature Survey and Preliminary Study of Controlling Mechanism by Computer Model, The Iron and Steel Institute of Japan, Tokyo, Japan, 1995, pp. 65-74.

    Google Scholar 

  24. A. Kelly and G.W. Groves: Crystallography and Crystal Defects, Addison-Wesley, Reading, MA, 1970, p. 163.

    Google Scholar 

  25. D. Zhao, L. Zhou, Y. Du, A. Wang, Y. Peng, Y Kong, C.-S. Sha, Y. Ouyang, and W. Zhang: CALPHAD, 2011, vol. 35 pp. 284-91.

    Article  CAS  Google Scholar 

  26. W. Liu, X. Sun, L.R. Pederson, O.A. Marina, and M.A. Khaleel: J. Power Sources, 2010, vol. 1950, pp. 7140-45.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. D.W. Saxey and E.A. Marquis for their assistance in performing the 3DAP experiments. Mr. S. Namba and Dr. T. Murakami are warmly thanked for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Aruga.

Additional information

Manuscript submitted July 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aruga, Y., Nako, H. Experimental and Theoretical Measurements of the Evolution of Embryos Before and During the Nucleation Stage. Metall Mater Trans A 43, 1102–1108 (2012). https://doi.org/10.1007/s11661-011-0950-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0950-2

Keywords

Navigation