Skip to main content
Log in

Formation Mechanisms of Cracks Formed During Hot Rolling of Free-Machining Steel Billets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, cracks formed in the edge side of Bi-S–based free-machining steel billets during hot rolling were analyzed in detail, and their formation mechanisms were clarified in relation with microstructure. Particular emphasis was placed on roles of bands of pearlites or C- and Mn-rich regions and complex iron oxides present in the edge side. Pearlite bands in the cracked region were considerably bent to the surface, while those in the noncracked region were parallel to the surface. This was because the alignment direction of pearlite bands was irregularly deviated up to 45 deg from the normal direction parallel to the surface, while the billet was rolled and rotated at 90 deg in the same direction between rolling passes. On the edge side, where pearlite bands were bent, iron oxides intruded deeply into the interior along pearlite bands, which worked as stress concentration sites during hot rolling and, consequently, main causes of the crack initiation in the rolled billet. On the surface of the wire rod rolled from the cracked billet, a few scabs were found when some protrusions were folded during hot rolling. In order to prevent the cracking in billets and scab formation in wire rods, (1) the increase of rolling passes and the decrease of reduction ratio for homogeneous rolling of billets and (2) the reduction in sulfur content for minimizing the formation and intrusion of complex iron oxides were suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. T. Akasawa, H. Sakurai, M. Nakamura, T. Tanaka, and K. Takano: J. Mater. Process. Technol., 2003, vols. 143–144, pp. 66–71.

    Article  Google Scholar 

  2. H. Yaguchi: J. Appl. Metalwork., 1986, vol. 4, pp. 214–25.

    Article  CAS  Google Scholar 

  3. H. Yaguchi: Mater. Sci. Technol., 1989, vol. 5, pp. 255–67.

    CAS  Google Scholar 

  4. K. Kishi and H. Eda: Wear, 1976, vol. 38, pp. 29–42.

    Article  CAS  Google Scholar 

  5. A.D. Foster, J. Lin, D.C.J. Farrugia, and T.A. Dean: J. Strain Anal. Eng. Des., 2007, vol. 42, pp. 227–35.

    Article  Google Scholar 

  6. T.J. Baker, F.P.L. Kavishe, and J. Wilson: Mater. Sci. Technol., 1986, vol. 2, pp. 576–82.

    CAS  Google Scholar 

  7. S.K. Cho: J. Kor. Inst. Metall. Mater., 1996, vol. 34, pp. 822–29.

    Google Scholar 

  8. S. Dinda and W.R. Warke: Mater. Sci. Eng. A, 1976, vol. A24, pp. 199–208.

    Article  Google Scholar 

  9. J.C. Lynn, W.R. Warke, and P. Gordon: Mater. Sci. Eng. A, 1975, vol. A18, pp. 51–62.

    Article  Google Scholar 

  10. W. Roberts, B. Lehtinen, and K.E. Easterling: Acta Metall., 1976, vol. 24, pp. 745–58.

    Article  CAS  Google Scholar 

  11. D.C.J. Farrugia: J. Mater. Process. Technol., 2006, vol. 177, pp. 486–92.

    Article  CAS  Google Scholar 

  12. A. Foster, J. Lin, D. Farrugia, and T. Dean: J. Mater. Process. Technol., 2006, vol. 177, pp. 497–500.

    Article  CAS  Google Scholar 

  13. J.L. Nazabal, J.J. Urcola, and M. Fuentes: Metallography, 1984, vol. 17, pp. 439–54.

    Article  CAS  Google Scholar 

  14. G. Sridhar, S.K. Das, and N.K. Mukhopadhyay: Eng. Fail. Anal., 1999, vol. 6, pp. 155–72.

    Article  CAS  Google Scholar 

  15. M. Hashimura, K. Miyanishi, and A. Mizuno: Nippon Steel Tech. Rep., 2007, vol. 96, pp. 45–49.

    Google Scholar 

  16. M. Toshiyuki, T. Kunikazu, and S. Tetsuo: JFE Tech. Rep., 2010, vol. 15, pp. 10–16.

    Google Scholar 

  17. S. Yamamoto, S. Takamori, Y. Osawa, and A. Sato: Nippon Kinzoku Gakkaishi, 2001, vol. 65, pp. 614–20.

    CAS  Google Scholar 

  18. T. Fukui: Honda Environmental Annual Report, Honda Motor Co., Ltd., Tokyo, Sept. 2007.

    Google Scholar 

  19. A.D. Foster, J. Lin, D.C.J. Farrugia, and T.A. Dean: J. Strain Anal. Eng. Des., 2007, vol. 42, pp. 227–35.

    Article  Google Scholar 

  20. H.H. Bok, M.G. Lee, H.D. Kim, and M.B. Moon: Metall. Mater. Int., 2010, vol. 16, pp. 185–95.

    Article  CAS  Google Scholar 

  21. S.I. Kim, Y. Lee, and B.L. Jang: Mater. Sci. Eng. A, 2003, vol. A357, pp. 235–39.

    CAS  Google Scholar 

  22. A. Najafi-Zadeh, J.J. Jonas, and S. Yue: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 2607–17.

    CAS  Google Scholar 

  23. Z.Q. Sun, W.Y. Yang, J.J. Qi, and A.M. Hu: Mater. Sci. Eng. A, 2002, vol. A334, pp. 201–06.

    CAS  Google Scholar 

  24. B.W. Choi, D.H. Seo, and J. Jang: Metall. Mater. Int., 2009, vol. 15, pp. 373–78.

    Article  CAS  Google Scholar 

  25. D.B. Park, J.W. Lee, Y.S. Lee, K.T. Park, and W.J. Nam: Metall. Mater. Int., 2009, vol. 15, pp. 197–202.

    Article  CAS  Google Scholar 

  26. B. Hwang, H. Lee, Y. Kim, and S. Lee: Mater. Sci. Eng. A, 2005, vol. A402, pp. 177–87.

    CAS  Google Scholar 

  27. D. Clover, B. Kinsella, B. Pejcic, and R. De Marco: J. Appl. Electrochem., 2005, vol. 35, pp. 139–49.

  28. J.I. Hwang, T.G. Jhee, Y.K. Kim, and T.Y. Hwang: Metall. Mater. Int., 2010, vol. 16, pp. 693–99.

    Article  CAS  Google Scholar 

  29. S.E. Offerman, N.H. Van Dijk, M.T. Rekveldt, J. Sietsma, and S. Van Der Zwaag: Mater. Sci. Technol., 2002, vol. 18, pp. 297–303.

    Article  CAS  Google Scholar 

  30. P.E.J. Rivera-Diaz-Del-Castillo, S. van der Zwaag, and J. Sietsma: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 425–33.

    Article  CAS  Google Scholar 

  31. W. Xu, P. Rivera-Diaz-Del-Castillo, and S. van der Zwaag: ISIJ Int., 2005, vol. 45, pp. 380–87.

  32. H.R. Le, M.P.F. Sutcliffe, P.Z. Wang, and G.T. Burstein: Acta Mater., 2004, vol. 52, pp. 911–20.

    Article  CAS  Google Scholar 

  33. M.F. Frolish, M. Krzyzanowski, W.M. Rainforth, and J.H. Beynon: J. Mater. Process. Technol., 2006, vol. 177, pp. 36–40.

    Article  CAS  Google Scholar 

  34. S. Hayashi, T. Sekimoto, K. Honda, T. Kinoshita, K. Tanaka, K. Ushioda, T. Narita, and S. Ukai: ISIJ Int., 2009, vol. 49, pp. 1938–44.

    Article  CAS  Google Scholar 

  35. H. Nisitani, T. Fukuda, K. Fujimura, and H. Horio: Proc. 4th Int. Offshore and Polar Eng. Conf., Osaka, Japan, Apr. 10–15, 1994, The International Society of Offshore and Polar Engineers, Golden, CO, 1994.

Download references

Acknowledgments

This work was supported by POSCO under Contract No. 20108008. The authors thank Dr. Yu Hwan Lee, Technical Research Laboratories, POSCO, for his help with experimental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yong Shin.

Additional information

Manuscript submitted March 23, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Kim, H., Shin, S.Y. et al. Formation Mechanisms of Cracks Formed During Hot Rolling of Free-Machining Steel Billets. Metall Mater Trans A 43, 882–892 (2012). https://doi.org/10.1007/s11661-011-0934-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0934-2

Keywords

Navigation