Skip to main content

Advertisement

Log in

Improvement in Mechanical Properties of A356 Tensile Test Bars Cast in a Permanent Mold by Application of a Knife Ingate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

As a standard test-bar permanent mold, the “Stahl” Mold has been widely used in foundries to assess the properties of cast alloys. However, inferior mechanical properties are often obtained with this mold due to shrinkage-induced microporosity in the gage section. In order to improve the mechanical properties, a design modification comprising a thin knife ingate between the feeder and test-bar cavity was evaluated in this work. The new design was studied by computer-aided simulation. Simulations predicted that the knife ingate improved the metal feeding capability and reduced the shrinkage microporosity at the gage section from 3 to 1 pct. Experimental verification work has been undertaken with aluminum alloy A356, and the results were analyzed by a statistics theory-based factorial analysis method. The new design resulted in main effects with ultimate tensile strength (UTS) improvement of 20 MPa (relative 12 pct) and elongation increment of 2 pct (relative 45 pct) for the as-cast test bars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth and Co., London, 1976, pp. 3–11.

    Google Scholar 

  2. G.A. Edwards, K. Stiller, G.L. Dunlop, and M. Couper: Acta Mater., 1998, vol. 46, pp. 3893–3904.

    Article  CAS  Google Scholar 

  3. C.H. Cáceres, C.J. Davidson, J.R. Griffiths, and Q.G. Wang: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2611–18.

    Article  Google Scholar 

  4. R.I. Mackay and J.E. Gruzleski: Int. J. Cast Met. Res., 1998, vol. 10, p. 255.

    CAS  Google Scholar 

  5. Q.G. Wang and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.

    Article  CAS  Google Scholar 

  6. H. Xu, D.L. Xu, S. Zhang, and Q. Han: Scripta Mater., 2006, vol. 54 (2), pp. 2191–96.

    Article  CAS  Google Scholar 

  7. J.R. Davis: Aluminum and Aluminum Alloys, ASM International Handbook, ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 3–5 and p. 368.

  8. G. Brodova, P.S. Popel, and G.I. Eskin: Liquid Metal Processing, Taylor and Francis, New York, NY, 2002, pp. 83–84.

    Google Scholar 

  9. H. Xu, X. Jian, T.T. Meek, and Q. Han: Mater. Lett., 2004, vol. 58, pp. 3669–73.

    Article  CAS  Google Scholar 

  10. X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190–93.

    Article  CAS  Google Scholar 

  11. C. Allen and Q. Han: Int. J. Metalcasting, 2011, vol. 5, pp. 69–70.

    Google Scholar 

  12. H. Xu, Q. Han, and T.T. Meek: Mater. Sci. Eng. A, 2008, vol. 473, pp. 96–104.

    Article  Google Scholar 

  13. G.K. Sigworth: AFS Trans., 1987, vol. 95, pp. 73–78.

    CAS  Google Scholar 

  14. A. Abdollahi and J.E. Gruzleski: Int. J. Cast Met. Res., 1998, vol. 11, pp. 145–55.

    CAS  Google Scholar 

  15. L. Bäckerud, J. Tamminen, and G. Chai: Solidification Characteristics of Aluminum Alloys, vol. 2, Foundry Alloys, Americans Foundrymen’s Society Inc., Schaumburg, IL, 1990, p. 266.

    Google Scholar 

  16. M. Djurdjevic, H. Jiang, and J. Sokolowski: Mater. Charact., 2001, vol. 46, pp. 31–38.

    Article  CAS  Google Scholar 

  17. A. Knuutinen, K. Nogita, S.D. McDonald, and A.K. Dahle: J. Light Met., 2001, vol. 1, pp. 229–40.

    Article  Google Scholar 

  18. D. Apelian, S. Shivkumar, and G. Sigworth: AFS Trans., 1989, vol. 97, p. 727.

    Google Scholar 

  19. S. Shivkumar, S. Ricci, C. Keller, and D. Apelian: J. Heat Treat., 1990, vol. 8, pp. 63–70.

    Article  CAS  Google Scholar 

  20. S. Shivkumar, R. Ricci, Jr., B. Steenhof, D. Apelian, and G.K. Sigworth: AFS Trans., 1989, vol. 97, pp. 791–810.

  21. D. Emadi, L.V. Whiting, M. Sahoo, P.D. Newcombe, T.M. Castles, P. Burke, and K.D. Callaghan: AFS Trans., 2001, 109: 487–98.

    CAS  Google Scholar 

  22. J. Campbell: Mod. Cast., 1997, vol. 87 (4), pp. 36–39.

    CAS  Google Scholar 

  23. F Chiesa, T. Boisvert, T. Houde, and D.e. Lavoie: AFS Trans., 2004, vol. 112, 04-077, pp. 1–10.

  24. E.W. Miguelucci: AFS Trans., 1985, vol. 93, pp. 913–16.

    Google Scholar 

  25. L.J. Ebert, R.E. Spear, and G. Sacks: AFS Trans., 1948, vol. 56, pp. 315–33.

    Google Scholar 

  26. ISO 2378, International Organization for Standardization, Switzerland, 1972.

  27. P. Grandier-Vazeille and S. Jacob: Fonderie, 1970, vol. 287, pp. 70–74.

    Google Scholar 

  28. K.R. Whaler: Stahl Specialty Company, Kingsville, MO, private communication, 2003.

  29. G.K. Sigworth and T.A. Kuhn: AFS Trans., 2009, vol. 117, pp. 55–62.

    CAS  Google Scholar 

  30. D. Emadi, L.V. Whiting, M. Sahoo, and D. Larouche: AFS Trans., 2004, vol. 112, pp. 225–36.

    CAS  Google Scholar 

  31. MagmaSoft v4.4, Magma Foundry Technologies, Chicago, IL.

  32. K.D. Carlson and C. Beckermann: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 163–75.

    Article  CAS  Google Scholar 

  33. T.-G. Kim and Z.-H. Lee: Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 3513–25.

    Article  CAS  Google Scholar 

  34. H. Wen: Master Thesis, Case Western Reserve University, 2000, p. 50.

  35. E. Niyama, T. Uchida, M. Morikawa, and S. Saito: Int. Cast Met. J., 1982, vol. 7 (3), pp. 52–63.

    Google Scholar 

  36. ASTM International E8M-09, ASTM International, West Conshohocken, PA, 2009.

  37. ASTM International B557M-10, ASTM International, West Conshohocken, PA, 2010.

  38. E.P. DeGarmo, J.T. Black, and R.A. Kosher: Material and Processing in Manufacturing, 9th ed., John Wiley and Sons, New York, NY, 2003, p. 227.

    Google Scholar 

  39. Y. Murakami: Stress Intensity Factors Handbook, 3rd ed., Elsevier, Amsterdam, 2001, Sect. 8.68, p. 658.

  40. M. Tiryahioglu: Mater. Sci. Eng. A-Struct., 2008, vol. 497, pp. 512–14.

    Article  Google Scholar 

  41. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.

    Article  CAS  Google Scholar 

  42. A. Dean and D. Voss: Design and Analysis of Experiments, Springer, New York, NY, 1999, p. 145.

    Book  Google Scholar 

  43. M. Drouzy, S. Jacob, and M. Richard: AFS Int. Cast Met. J., 1980, vol. 5, pp. 43–50.

    CAS  Google Scholar 

  44. Minitab v15, Minitab Inc., State College, PA.

  45. G.K. Sigworth and C.H. Casares: AFS Trans., 2004, vol. 112, pp. 373–86.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the advice and consultation with Steve Sikorski, MagmaSoft, regarding the computer simulation studies; foundry casting and testing activity with Xuejun Zhu, Chai-Jung Chen, and Rich Miller, CWRU; assistance by Bob Pischel and Jason Place, FOSECO, on mold coating and Alspek measurements; General Aluminum for the donation of a standard test-bar mold; Dennis Daniels, Alumalloy, for the A356 alloy. Finally, the project team thanks the American Foundry Society for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaou Wang.

Additional information

Manuscript submitted February 28, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Schwam, D., Neff, D.V. et al. Improvement in Mechanical Properties of A356 Tensile Test Bars Cast in a Permanent Mold by Application of a Knife Ingate. Metall Mater Trans A 43, 1048–1059 (2012). https://doi.org/10.1007/s11661-011-0918-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0918-2

Keywords

Navigation