Skip to main content
Log in

Crystallographic Texture and Volume Fraction of α and β Phases in Zr-2.5Nb Pressure Tube Material During Heating and Cooling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The phase transformations in an as-received Zr-2.5Nb pressure tube material were characterized in detail by neutron diffraction. The texture and volume fraction of α and β phases were measured on heating at eight different temperatures 373 K to 1323 K (100 °C to 1050 °C) traversing across the α/(α + β) and (α + β)/β solvus lines, and also upon cooling at 1173 K and 823 K (900 °C and 550 °C). The results indicate that the α-phase texture is quite stable, with little change in the {0002} and \( \left\{ {11\bar{2}0} \right\} \) pole figures during heating to 1123 K (850 °C). The β-phase volume fraction increased while a slight change in texture was observed until heating reached 973 K (700 °C). On further heating to 1173 K (900 °C), there appears a previously unobserved α-phase texture component due to coarsening of the prior primary α grains; meanwhile the transformed β-phase texture evolved markedly. At 1323 K (1050 °C), the α phase disappeared with only 100 pct β phase remaining but with a different texture than that observed at lower temperatures. On cooling from the full β-phase regime, a different cooldown transformed α-phase texture was observed, with no resemblance of the original texture observed at 373 K (100 °C). The transformed α-phase texture shows that the {0002} plane normals are within the radial-longitudinal plane of the pressure tube following the Burgers orientation relationship of (110)bcc//(0002)hcp and \( [\bar{1}11]_{\text{bcc}} //[11\bar{2}0]_{\text{hcp}} \) with a memory of the precursor texture of the primary α grains observed on heating at 1173 K (900 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. CANDU® (CANada Deuterium Uranium) is a registered trademark of Atomic Energy of Canada Limited.

  2. ZIRCALOY is a trademark of Westinghouse Electric Company, Pittsburgh, PA.

References

  1. B.A. Cheadle: J. ASTM Int., 2010, vol. 7 (8), pp. 1–15.

  2. J.P. Abriata and J.C. Bolcich: Bull. Alloy Phase Diagrams, 1982, vol. 3 (1), pp. 34–44.

    Article  Google Scholar 

  3. P. Gangli, J. Root, and R. Fong: Can. Metall. Q., 1995, vol. 34, pp. 211–18.

    Article  Google Scholar 

  4. J. Romero, M. Preuss, and J. Quinta Da Fonseca: Acta Mater., 2009, vol. 57, pp. 5501–11.

    Article  CAS  Google Scholar 

  5. H.R. Wenk, I. Lonardelli, and D. Williams: Acta Mater., 2004, vol. 52, pp. 1899–1907.

    Article  CAS  Google Scholar 

  6. N. Gey, E. Gautier, M. Humbert, A. Cerqueira, J.L. Bechade, and P.J. Archambault: J. Nucl. Mater., 2002, 302, pp. 175–84.

    Article  CAS  Google Scholar 

  7. J.P. Abriata, J.C. Bolcich, and D. Arias: Bull. Alloy Phase Diagrams, 1983, vol. 4 (2), pp. 2087–89.

    Article  Google Scholar 

  8. M.R. Daymond, R.A. Holt, S. Cai, P. Mosbrucker, and S.C. Vogel: Acta Mater., 2010, vol. 58, pp. 4053–66.

    Article  CAS  Google Scholar 

  9. W.G. Burgers: Physica I, 1934, pp. 561–86.

  10. M. Griffiths, J.E. Winegar, and A. Buyers: J. Nucl. Mater., 2008, vol. 383, pp. 28–33.

    Article  CAS  Google Scholar 

  11. S.A. Aldridge and B.A. Cheadle: J. Nucl. Mater., 1972, vol. 42, pp. 32–42.

    Article  CAS  Google Scholar 

  12. S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Von Dreele, H.R. Wenk, and D.J. Williams: Advan. X-ray Anal., 2004, vol. 47, pp. 431–36.

    CAS  Google Scholar 

  13. H.R. Wenk, L. Lutterotti, and S.C. Vogel: Nucl. Instrum. Meth. Phys. Res., 2003, vol. A515, pp. 575–88.

    Google Scholar 

  14. R.W.L. Fong, H. Saari, R. Miller, J. Teutsch, and S.C. Vogel: Paper presented at Thermec’ 2011 Conf., Quebec City, PQ, Aug. 1–5, 2011.

  15. H.R. Wenk, L. Lutterotti, and S.C. Vogel: J. Powder Diffraction, 2010, vol. 25 (3), p. 14.

    Google Scholar 

  16. S. Matthies, L. Lutterotti, and H.R. Wenk: J. Appl. Crystallogr., 1997, vol. 30, pp. 31–42.

    Article  CAS  Google Scholar 

  17. S. Matthies, J. Pehl, H.R. Wenk, and S. Vogel: J. Appl. Crystallogr., 2005, vol. 38, pp. 462–75.

    Article  CAS  Google Scholar 

  18. L. Lutterotti, D. Chateigner, S. Ferrari, and J. Ricote: Thin Solid Films, 2004, vol. 450, pp. 34–41.

    Article  CAS  Google Scholar 

  19. H.R. Wenk: Preferred Orientation in Metals and Rocks, H.-R. Wenk, ed., Academic Press, New York, NY, 1985, pp. 11–47.

  20. D.L. Douglass: The Metallurgy of Zirconium, Atomic Energy Review Supplement 1997, International Atomic Energy Agency, Vienna, pp. 4–7.

  21. J. Goldak, L.T. Lloyd, and C.S. Barrett: Phys. Rev., 1966, vol. 144 (2), pp. 478–84.

    Article  CAS  Google Scholar 

  22. A. Heiming, W. Petry, J. Trampenau, W. Miekeley, and J. Cockcroft: J. Phys., Condens. Mater., 1992, vol. 4, pp. 727–33.

    Article  CAS  Google Scholar 

  23. R. Choubey and J.A. Jackman: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 431–40.

    Article  CAS  Google Scholar 

  24. I.T. Bethune and C.D. Williams: J. Nucl. Mater., 1968, vol. 29, pp. 129–32.

    Article  Google Scholar 

  25. D.O. Northwood and W.L. Fong: Metallography, 1980, vol. 13, pp. 97–115.

    Article  CAS  Google Scholar 

  26. G.J. Davies, D.J. Goodwill, and J.S. Kallend: J. Appl. Crystallogr., 1970, vol. 4, pp. 193–96.

    Article  Google Scholar 

  27. M. Griffiths, R.A. Holt, J. Li, and S. Saimoto: Microstructural Science, ASM INTERNATIONAL, Metals Park, OH, 1999, vol. 26, pp. 293–302.

Download references

Acknowledgments

This work has benefited from the use of the Manuel Lujan, Jr. Neutron Scattering Center at LANSCE, which is funded by the United States Department of Energy Office of Basic Energy Sciences, under Contract No. DE-AC52-06NA25396. The assistance of Dr. D. Sediako (NRC–Chalk River) is gratefully acknowledged. We thank Professor Wenk for useful comments on ODF data calculations in MAUD program. Thanks are due to K.V. Kidd for the reversed bend sample of an as-received pressure tube material used in this study, and also to Dr. O.T. Woo for providing TEM micrographs. Useful comments from Researcher Emeritus Dr. C.E. Coleman are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. L. Fong.

Additional information

Manuscript submitted February 24, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, R.W.L., Miller, R., Saari, H.J. et al. Crystallographic Texture and Volume Fraction of α and β Phases in Zr-2.5Nb Pressure Tube Material During Heating and Cooling. Metall Mater Trans A 43, 806–821 (2012). https://doi.org/10.1007/s11661-011-0914-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0914-6

Keywords

Navigation