Metallurgical and Materials Transactions A

, Volume 43, Issue 2, pp 505–519 | Cite as

Influence of Process Parameters on the Mechanical Behavior of an Ultrafine-Grained Al Alloy

  • Troy D. Topping
  • Byungmin Ahn
  • Ying Li
  • Steven R. Nutt
  • Enrique J. Lavernia
Article

Abstract

Aluminum alloys with nanocrystalline (NC) and ultrafine grain (UFG) size are of interest because of their strengths that are typically 30 pct greater than conventionally processed alloys of the same composition. In this study, UFG AA 5083 plate was prepared by quasi-isostatic (QI) forging of cryomilled powder, and the microstructure and mechanical behavior was investigated and compared with the behavior of coarse-grained AA 5083. Forging parameters were adjusted in an effort to strengthen the UFG material while retaining some tensile ductility. Different forging parameters were employed on three plates, with approximate dimensions of 254 mm diameter and 19 mm thickness. The overarching goal of the current effort was to increase strength through minimized grain growth during processing while maintaining ductility by breaking up prior particle boundaries (PPBs) with high forging pressures. Mechanical tests revealed that strength increased inversely with grain size, whereas ductility for some of the experimental materials was preserved at the level of the conventional alloy. The application of the Hall-Petch relationship to the materials was studied and is discussed in detail with consideration given to strengthening mechanisms other than grain size, including dispersion (Orowan), solid solution, and dislocation strengthening.

References

  1. 1.
    Z.H. Zhang, B.Q. Han, K.H. Chung, and E.J. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2265-73.CrossRefGoogle Scholar
  2. 2.
    D.B. Witkin and E.J. Lavernia: Progr. Mater. Sci., 2006, vol. 51, no. 1, pp. 1-60.CrossRefGoogle Scholar
  3. 3.
    F.A. Mohamed: Acta Mater., 2003, vol. 51, no. 14, pp. 4107-19.CrossRefGoogle Scholar
  4. 4.
    D. Witkin, B.Q. Han, and E.J. Lavernia: J. Mater. Res., 2005, vol. 20, no. 8, pp. 2117-26.CrossRefGoogle Scholar
  5. 5.
    A.P. Newbery, S.R. Nutt, and E.J. Lavernia: JOM, 2006, vol. 58, no. 4, pp. 56-61.CrossRefGoogle Scholar
  6. 6.
    Y. Li, W. Liu, V. Ortalan, W.F. Li, Z. Zhang, R. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2010, vol. 58, no. 5, pp. 1732-40.CrossRefGoogle Scholar
  7. 7.
    T.J. Van Daam and C. Clifford: US Patent 7344675, The Boeing Company, Chicago, IL.Google Scholar
  8. 8.
    A.P. Newbery, B. Ahn, T.D. Topping, P.S. Pao, S.R. Nutt, and E.J. Lavernia: J. Mater. Process. Tech., 2008, vol. 203, nos. 1–3, pp. 37-45.CrossRefGoogle Scholar
  9. 9.
    D. Witkin, B.Q. Han, and E.J. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 185-94.CrossRefGoogle Scholar
  10. 10.
    ANSI H35.1-2004, Alloy And Temper Designation Systems For Aluminum.Google Scholar
  11. 11.
    J.B. Cohen: Practical Organic Chemistry, Macmillan, London, UK, 356, p. 1910.Google Scholar
  12. 12.
    ASTM, “Standard Test Methods for Determining Average Grain Size,” 2004.Google Scholar
  13. 13.
    ASTM, “Standard Test Methods for Tension Testing of Metallic Materials,” 2008.Google Scholar
  14. 14.
    T.D. Topping, E.J. Lavernia, M. Kuruvilla, and T.S. Srivatsan: The Cyclic Fatigue, Damage Initiation, Propagation and Fracture Behavior of Cryomilled Aluminum Alloy 5083: Influence of Secondary Processing, Ed. M.A. Inman, Wiley, New York, NY, 2010.Google Scholar
  15. 15.
    T.D. Topping, Z. Zhang, E.J, Lavernia, T.S. Srivatsan, and M. Kuruvilla: Processing and Fabrication of Advanced Materials XIX, Ed. R.J.L.D. Bhattacharyya and T.S. Srivatsan, University of Auckland Press, Auckland, New Zealand, 2011, pp. 21–34.Google Scholar
  16. 16.
    W.F. Hosford: Mechanical Behavior of Materials, Cambridge University Press, New York, NY, 2005, pp. 188-206.Google Scholar
  17. 17.
    B.Q. Han, F.A. Mohamed, and E.J. Lavernia: J. Mater. Sci., 2003, vol. 38, no. 15, pp. 3319-24.CrossRefGoogle Scholar
  18. 18.
    B. Ahn, R. Mitra, E.J. Lavernia, S.R. Nutt: J. Mater. Sci., 2010, vol. 45, no. 17, pp. 4790-95.CrossRefGoogle Scholar
  19. 19.
    F. Shen, J. Zhou, Y. Liu, R. Zhu, S. Zhang, and Y. Wang: Comput. Mater. Sci., 2010, vol. 49, no. 2, pp. 226-35.CrossRefGoogle Scholar
  20. 20.
    Y.T. Zhu: J. Mater. Eng. Perform., 2005, vol. 14, no. 4, pp. 467-72.CrossRefGoogle Scholar
  21. 21.
    T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V.S. Sarma: Mater. Sci. Eng. A, 2010, vol. 527, nos. 29–30, pp. 7821-25.Google Scholar
  22. 22.
    E.L. Huskins, B. Cao, and K.T. Ramesh: Mater. Sci. Eng. A, 2010, vol. 527, no. 6, pp. 1292-98.CrossRefGoogle Scholar
  23. 23.
    Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Mater.Sci. Eng. A, 2009, vol. 527, nos. 1–2, pp. 305-16.Google Scholar
  24. 24.
    V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2335-43.CrossRefGoogle Scholar
  25. 25.
    Metals Handbook, Properties and Selection: Nonferrous Alloys and Special Purpose Materials, 10th ed., vol. 2, ASM, Materials Park, OH, 1990.Google Scholar
  26. 26.
    ASM Handbooks Online: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Properties of Wrought Aluminum and Aluminum Alloys. vol. 2, 2002.Google Scholar
  27. 27.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, no. 1, pp. 25-28.Google Scholar
  28. 28.
    E.O. Hall: Proc. Phys. Soc. Lond. Sect. B, 1951, vol. 64, no. 381, pp. 747-53.CrossRefGoogle Scholar
  29. 29.
    M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 1999, Prentice Hall, Upper Saddle River, NJ, pp. 247–81.Google Scholar
  30. 30.
    R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia: Acta Mater., 2004, vol. 52, no. 14, pp. 4259-71.CrossRefGoogle Scholar
  31. 31.
    A. Forcellese and F. Gabrielli: Int. J. Mach. Tools Manufact., 2000, vol. 40, no. 9, pp. 1285-97.CrossRefGoogle Scholar
  32. 32.
    O. Jensrud and K. Pedersen: J. Mater. Process. Tech., 1998, vols. 80–81, pp. 156-60.CrossRefGoogle Scholar
  33. 33.
    G.E. Dieter: Metallurgy and Metallurgy Engineering Series, McGraw-Hill, New York, NY, 1961, pp. 118-45.Google Scholar
  34. 34.
    G.S. Ansell: Acta Metall., 1961, vol. 9, no. 5, pp. 518-19.CrossRefGoogle Scholar
  35. 35.
    J.E. White: J. Met., 1965, vol. 17, no. 6, p. 587.Google Scholar
  36. 36.
    N. Hansen: Acta Metall., 1970, vol. 18, no. 1, p. 137.CrossRefGoogle Scholar
  37. 37.
    R. Petkovic-Luton and J. Vallone: U.S. Patent 4619699, to Exxon Research and Engineering Company, 1986.Google Scholar
  38. 38.
    B.J.M. Aikin, R.M. Dickerson, D.T. Jayne, S. Farmer, and J.D. Whittenberger: Scripta Metall. Mater., 1994, vol. 30, no. 1, pp. 119-22.CrossRefGoogle Scholar
  39. 39.
    R.W. Hayes, P.B. Berbon, and R.S. Mishra: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3855-61.CrossRefGoogle Scholar
  40. 40.
    O. Susegg: Micron Microscop. Acta, 1992, vol. 23, nos. 1–2, pp. 223-24.CrossRefGoogle Scholar
  41. 41.
    B.Q. Han and D.C. Dunand: Mater. Sci. Eng. A, 2000, vol. 277, nos. 1–2, pp. 297-304.Google Scholar
  42. 42.
    A. Kelly and R. Nicholson: Strengthening Methods in Crystals, Elsevier, New York, NY, 1971, p. 629.Google Scholar
  43. 43.
    ASM Handbooks Online, Alloy Phase Diagrams, Al Binary Alloy Phase Diagrams, Al-Mg. ASM International, vol. 3, 2002.Google Scholar
  44. 44.
    J.C. Huang, I.C. Hsiao, T.D. Wang, and B.Y. Lou: Scripta Mater., 2000, vol. 43, no. 3, pp. 213-20.CrossRefGoogle Scholar
  45. 45.
    O.D. Sherby and J. Wadsworth: Progr. Mater. Sci., 1989, vol. 33, no. 3, pp. 169-221.CrossRefGoogle Scholar
  46. 46.
    I. Roy, M. Chauhan, F.A. Mohamed, and E.J. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 721-30.CrossRefGoogle Scholar
  47. 47.
    V.L. Tellkamp, E.J. Lavernia, and A. Melmed: J. Mater. Res., 2001, vol. 16, no. 4, pp. 938-44.CrossRefGoogle Scholar
  48. 48.
    H. Tensi and H. Ehrhardt: Zeitschrift Fur Metallkunde, 1968, 59, no. 3.Google Scholar
  49. 49.
    M. Abbadi, P. Hahner, and A. Zeghloul: Mater. Sci. Eng. A, 2002, 337, no. 1–2, pp. 194-201.Google Scholar
  50. 50.
    J.Z. Chen, L. Zhen, L. Fan, S. Yang, S. Dai, and W. Shao: Transactions of Nonferrous Metals Society of China, 2009, vol. 19, no. 5, pp. 1071-75.CrossRefGoogle Scholar
  51. 51.
    B. Li, B.Y. Caoa, K.T. Ramesha, and E. Ma: Acta Mater., 2009, vol. 57, no. 15, pp. 4500-07.CrossRefGoogle Scholar
  52. 52.
    Y.H. Zhao, Y.Z. Guob, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Mater. Sci. Eng. A, 2009, vol. 525, nos. 1–2, pp. 68-77.Google Scholar
  53. 53.
    F. Tang and J.M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493, nos. 1–2, pp. 101-03.Google Scholar
  54. 54.
    R. Rodriguez, R.W. Hayes, P.B. Berbon, and E.J. Lavernia: Acta Mater., 2003, vol. 51, no. 4, pp. 911-29.CrossRefGoogle Scholar
  55. 55.
    R.G. Vogt, Z. Zhang, T.D. Topping, E.J. Lavernia, and J.M. Schoenung: J. Mater. Process. Tech., 2009, vol. 209, no. 11, pp. 5046-53.CrossRefGoogle Scholar
  56. 56.
    M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris, Jr: Acta Mater., 2004, vol. 52, no. 18, pp. 5381-87.CrossRefGoogle Scholar
  57. 57.
    D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Acta Mater., 2006, vol. 54, no. 8, pp. 2253-63.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • Troy D. Topping
    • 1
  • Byungmin Ahn
    • 2
  • Ying Li
    • 1
  • Steven R. Nutt
    • 2
  • Enrique J. Lavernia
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California, DavisDavisUSA
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations