Skip to main content

Advertisement

Log in

A Molecular Dynamics Simulation Study of the Cavitation Pressure in Liquid Al

  • Symposium: Approaches for Investigating Phase Transformations at the Atomic Scale
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To understand the formation mechanism of hot tearing defects generated during casting, a knowledge of the pressure at which cavities form spontaneously in the liquid metal is required. In this work, molecular dynamics (MD) simulations were used to compute the cavitation pressure P c in liquid Al, where atomic interactions were described by an embedded atom method potential. The cavitation pressure was computed for various initial conditions and system sizes, and using classic nucleation theory, P c was extrapolated from MD length and time scales to those appropriate for casting. A value of P c ≈ −670 MPa was obtained, which is several orders of magnitude less than that predicted from hot tearing models. To investigate the possible role of heterogeneous nucleation sites, the P c simulations were repeated on solid–liquid systems that were simultaneously solidifying. In addition, the influence of a trace impurity Mg on the cavitation pressure was also investigated. Neither the impure Mg atoms nor the solid–liquid interfaces act as heterogeneous sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The Clausius-Clapyeron equation predicts that the equilibrium melting point will decrease for the imposed negative pressures. For undercoolings less than 100 K (100 °C) the system simply equilibrated at the new melting temperature before cavitation was observed.

  2. The pressure does not increase exactly to zero because liquid surfaces remain in the system after bubble growth is complete.

  3. The value of the surface tension is lower than that for most liquid alloys, but it is consistent with the observation that the surface tension for this Al interatomic potential is known to be low (J.R. Morris, private communication).

References

  1. M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449-55.

    Article  CAS  Google Scholar 

  2. J.A. Spittle and A.A. Cushway: Met. Technol., 1983, vol. 10, pp. 6-13.

    CAS  Google Scholar 

  3. A.S. Sabua and S. Viswanathan: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 243-55.

    Article  Google Scholar 

  4. S. Vernede, J.A. Dantzig and M. Rappaz: Acta Mater., 2009, vol. 57, pp. 1554-69.

    Article  CAS  Google Scholar 

  5. E. Herbert, S. Balibar, and F. Caupin: Phys. Rev. E, 2006, vol. 74, pp. 041603.

    Article  Google Scholar 

  6. V.E. Vinogradov, P.A. Pavlov and V.G. Baidakov: Chem. Phys. Lett., 2009, vol. 474, pp. 294-96.

    Article  CAS  Google Scholar 

  7. G.A. Carlson: J. Appl. Phys., 1975, vol. 46, 4069-70.

    Article  CAS  Google Scholar 

  8. P.R. Williams, P.M. Williams and S.W.J. Brown: J. Phys. D, 1998, vol. 31, pp. 1923-26.

    Article  CAS  Google Scholar 

  9. T.T. Bazhirov, G.E. Norman, and V.V. Stegailov: J. Phys., 2007, vol. 20, pp. 114113.

    Google Scholar 

  10. M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta: Phil. Mag., 2008, vol. 88, pp. 1723-50.

    Article  CAS  Google Scholar 

  11. M.S. Daw and M.I. Baskes: Phys. Rev. Lett., 1983, vol. 50, pp. 1285-88.

    Article  CAS  Google Scholar 

  12. S.J. Plimpton: J. Comput. Phys., 1995, vol. 117, pp. 1-19.

    Article  CAS  Google Scholar 

  13. M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt: Phil. Mag., 2009, vol. 89, pp. 3269-85.

    Article  CAS  Google Scholar 

  14. J. Monk, Y. Yang, M.I. Mendelev, M. Asta, J.J. Hoyt, and D.Y. Sun: Model. Simul. Mater. Sci. Engin., vol. 18, pp. 015004.

  15. D.Y. Sun, M. Asta, and J.J. Hoyt, Phys. Rev. B, 2004, vol. 69, pp. 24108.

    Article  Google Scholar 

  16. D. Kashchiev and A. Firoozabadi: J. Chem. Phys., 1993, vol. 98, pp. 4690-99.

    Article  CAS  Google Scholar 

  17. H. Watanabe, M. Suzuki, and N. Ito: Phys. Rev. E, 2010, vol. 82, pp. 051604.

    Article  Google Scholar 

  18. R.L. Davidchack and B.B. Laird: J. Chem. Phys., 1998, vol. 108, pp. 9452-62.

    Article  CAS  Google Scholar 

  19. C.A. Becker, J.J. Hoyt, D. Buta, and M. Asta: Phys. Rev. E, 2007, vol. 75, pp. 61610.

    Article  CAS  Google Scholar 

  20. T. Frolov and Y. Mishin: Model. Simul. Mater. Sci. Eng., 2010, vol. 18, pp. 074003.

    Article  Google Scholar 

  21. J.J. Hoyt, M. Asta, and A. Karma: Phys. Rev. Lett., 2001, vol. 86, pp. 5530-33.

    Article  CAS  Google Scholar 

  22. A.B. Phillion, S.L. Cockcraoft, and P.D. Lee: Mater. Sci. Eng. A, 2008, vol. 491, pp. 237-47.

    Article  Google Scholar 

  23. R.S. Barnett, J.A. Taylor and D.H. St. John: 2004,Solidification of Aluminum Alloys Symposium, (TMS, Warrendale, PA), pp. 201-09.

    Google Scholar 

  24. I. Farup, M. Rappaz, and J.M. Drezet: Acta Metall., 2001, vol. 49, pp. 1261-69.

    CAS  Google Scholar 

Download references

Acknowledgments

J.J.H. wishes to thank Prof. Alain Karma for several enlightening discussions. This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Hoyt.

Additional information

Manuscript submitted April 4, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyt, J.J., Potter, A.A. A Molecular Dynamics Simulation Study of the Cavitation Pressure in Liquid Al. Metall Mater Trans A 43, 3972–3977 (2012). https://doi.org/10.1007/s11661-011-0846-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0846-1

Keywords

Navigation