Skip to main content
Log in

Finite-Element Modeling of Titanium Powder Densification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A powder-level, finite-element model is created to describe densification, as a function of applied stress during uniaxial hot pressing, of CP-Ti and Ti-6Al-4V powders with spherical or spheroidal shapes for various packing geometries. Two cases are considered: (1) isothermal densification (in the α- or β-fields of CP-Ti and in the β-field of Ti-6Al-4V) where power-law creep dominates and (2) thermal cycling densification (across the α/β-phase transformation of Ti-6Al-4V) where transformation mismatch plasticity controls deformation at low stresses. Reasonable agreement is achieved between numerical results and previously published experimental measurements and continuum modeling predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213, pp. 103-14.

    Article  Google Scholar 

  2. M. Peters, J. Kumpfert, C.H. Ward, and C. Leyens: Adv. Eng. Mater., 2003, vol. 5, pp. 419-27.

    Article  CAS  Google Scholar 

  3. M. Niinomi: Mater. Sci. Eng. A, 1998, vol. 243, pp. 231-36.

    Article  Google Scholar 

  4. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Progr. Mater. Sci., 2009, vol. 54, pp. 397-425.

    Article  CAS  Google Scholar 

  5. K. Wang: Mater. Sci. Eng. A, 1996, vol. 213, pp. 134-37.

    Article  Google Scholar 

  6. H.J. Rack and J.I. Qazi: Mater. Sci. Eng. C, 2006, vol. 26, pp. 1269-77.

    Article  CAS  Google Scholar 

  7. D.S. Wilkinson and M.F. Ashby: Acta Metall., 1975, vol. 23, pp. 1277-85.

    Article  CAS  Google Scholar 

  8. E. Arzt, M. Ashby, and K. Easterling: Metall. Trans. A, 1983, vol. 14A, pp. 211-21.

    Google Scholar 

  9. A.S. Helle, K.E. Easterling, and M.F. Ashby: Acta Metall., 1985, vol. 33, pp. 2163-74.

    Article  CAS  Google Scholar 

  10. N. Taylor, D.C. Dunand, and A. Mortensen: Acta Metall. Mater., 1993, vol. 41, pp. 955-65.

    Article  CAS  Google Scholar 

  11. C. Schuh and D.C. Dunand: Acta Mater., 2001, vol. 49, pp. 199-210.

    Article  CAS  Google Scholar 

  12. Q. Li, E. Chen, D. Bice, and D. Dunand: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 44-53.

    Article  CAS  Google Scholar 

  13. Y.-M. Liu, H.N.G. Wadley, and J.M. Duva: Acta Metall. Mater., 1994, vol. 42, pp. 2247-60.

    Article  CAS  Google Scholar 

  14. J.M. Duva and P.D. Crow: Acta Metall. Mater., 1992, vol. 40, pp. 31-35.

    Article  CAS  Google Scholar 

  15. C. Schuh, P. Noel, and D.C. Dunand: Acta Mater., 2000, vol. 48, pp. 1639-53.

    Article  CAS  Google Scholar 

  16. B. Ye, M.R. Matsen, and D.C. Dunand: Acta Mater., 2010, vol. 58, pp. 3851-9.

    Article  CAS  Google Scholar 

  17. G.W. Greenwood and R.H. Johnson: Proc. Roy. Soc. Lond.. Series A, Math. Phys. Sci., 1965, vol. 283, pp. 403–22.

  18. P. Zwigl and D. Dunand: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2571-82.

    Article  CAS  Google Scholar 

  19. C. Schuh and D.C. Dunand: J. Mater. Res., 2001, vol. 16, pp. 865-75.

    Article  CAS  Google Scholar 

  20. D.C. Dunand and S. Myojin: Mater. Sci. Eng. A, 1997, vol. 230, pp. 25-32.

    Article  Google Scholar 

  21. M. Abouaf, J.L. Chenot, G. Raisson, and P. Bauduin: Int. J. Numer. Meth. Eng., 1988, vol. 25, pp. 191-212.

    Article  Google Scholar 

  22. N.A. Fleck, L.T. Kuhn, and R.M. McMeeking: J. Mech. Phys. Solid., 1992, vol. 40, pp. 1139-62.

    Article  Google Scholar 

  23. P. Sofronis and R.M. McMeeking: J. Appl. Mech., 1992, vol. 59, pp. S88-S95.

    Article  Google Scholar 

  24. L.T. Kuhn and R.M. McMeeking: Int. J. Mech. Sci., 1992, vol. 34, pp. 563-73.

    Article  Google Scholar 

  25. K.T. Kim and J.H. Cho: Int. J. Mech. Sci. 2001, vol. 43, pp. 2929-46.

    Article  Google Scholar 

  26. H. Li, S. Saigal, and P.T. Wang: Acta Mater., 1996, vol. 44, pp. 2591-98.

    Article  CAS  Google Scholar 

  27. I. Sridhar, N.A. Fleck, and A.R. Akisanya: Int. J. Mech. Sci., 2001, vol. 43, pp. 715-42.

    Article  Google Scholar 

  28. R. Gampala, D.M. Elzey, and H.N.G. Wadley: Acta Mater., 1996, vol. 44, pp. 1479-95.

    Article  CAS  Google Scholar 

  29. A.C.F. Cocks and I.C. Sinka: Mech. Mater., 2007, vol. 39, pp. 392-403.

    Article  Google Scholar 

  30. J. Xu and R.M. McMeeking: Int. J. Mech. Sci., 1995, vol. 37, pp. 883-97.

    Article  Google Scholar 

  31. P.A. Cundall and O.D.L. Strack: Geotechnique, 1979, vol. 29, pp. 47-65.

    Article  Google Scholar 

  32. P. Redanz and N. Fleck: IUTAM Symp. on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials, 2002, pp. 293–98.

  33. A.T. Procopio and A. Zavaliangos: J. Mech. Phys. Solid, 2005, vol. 53, pp. 1523-51.

    Article  Google Scholar 

  34. J. Zhang: Compos. Sci. Technol., 2009, vol. 69, pp. 2048-53.

    Article  CAS  Google Scholar 

  35. B. Harthong, J.F. Jerier, P. Doremus, D. Imbault, and F.V. Donze: Int. J. Solid. Struct., 2009, vol. 46, pp. 3357-64.

    Article  Google Scholar 

  36. J.F. Jerier, B. Harthong, D. Imbault, F.V. Donze, and P. Doremus: Powders and Grains 2009: Proc. 6 th Int. Conf. on Micromechanics of Granular Media, 2009, vol. 1145, pp. 457–60.

  37. J.E. Andrade and X. Tu: Mech. Mater., 2009, vol. 41, pp. 652-69.

    Article  Google Scholar 

  38. W.L. Roland, T.G. David, S.Y. Xinshe, and C.R. Ray: Int. J. Numer. Meth. Eng., 2005, vol. 62, pp. 853-69.

    Article  Google Scholar 

  39. D.T. Gethin, X.S. Yang, and R.W. Lewis: Comput. Meth. Appl. Mech. Eng., 2006, vol. 195, pp. 5552-65.

    Article  Google Scholar 

  40. G. Frenning: Comput. Meth. Appl. Mech. Eng., 2008, vol. 197, pp. 4266-72.

    Article  Google Scholar 

  41. J.L. Choi and D.T. Gethin: Model. Simulat. Mater. Sci. Eng., 2009, vol. 17, pp. 035005.

    Article  Google Scholar 

  42. A. Munjiza and K.R.F. Andrews: Int. J. Numer. Meth. Eng., 1998, vol. 43, pp. 131-49.

    Article  Google Scholar 

  43. X. Ma and D.Z. Zhang: J. Mech. Phys. Solid., 2006, vol. 54, pp. 1426-48.

    Article  CAS  Google Scholar 

  44. S. Nair and J. Tien: Metall. Trans. A, 1987, vol. 18, pp. 97-107.

    Article  Google Scholar 

  45. E.K.H. Li and P.D. Funkenbusch: Acta Metall., 1989, vol. 37, no. 6, pp. 1645-55.

    Article  CAS  Google Scholar 

  46. E.K.H. Li and P.D. Funkenbusch: Metall. Trans. A, 1993, vol. 24, pp.1345-54.

    Article  Google Scholar 

  47. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, 1st ed., Pergamon Press, New York, 1982, pp. 184.

    Google Scholar 

  48. C. Schuh and D.C. Dunand: Scripta Mater., 2001, vol. 45, pp. 1415-21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Boeing Corporation. The authors thank Mr. L.C. Firth (The Boeing Company) for useful discussions. This article is dedicated to the memory of Dr. W.B. Crow (The Boeing Company) who made numerous important contributions to the current research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Dunand.

Additional information

Manuscript submitted January 25, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, B., Matsen, M.R. & Dunand, D.C. Finite-Element Modeling of Titanium Powder Densification. Metall Mater Trans A 43, 381–390 (2012). https://doi.org/10.1007/s11661-011-0839-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0839-0

Keywords

Navigation