Skip to main content
Log in

Experimental and Modeling Studies of the Lamellar Eutectic Growth of Mg-Al Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Directionally solidified samples of Mg-32.3 wt pct Al eutectic alloy were produced under an argon atmosphere in a vacuum Bridgman-type furnace to study the eutectic growth with different growth velocities. Typical features such as steady-state lamellar eutectic growth, lamellar branching at the quenching interface, and the formation of colony structures due to the impurity of the Mg-Al binary alloy were observed using a JEOL 6301F scanning electron microscope (JEOL Ltd., Tokyo, Japan). The lamellar spacing of the two eutectic phases was measured on the transverse sections of the samples. It was found that the relationship between the measured lamellar spacing and growth velocity agreed well with the prediction of the Jackson-Hunt model. Subsequent studies of Mg-Al eutectic growth were conducted using a numerical model based on the cellular automaton (CA) method. Taking account of the solute diffusion, constitutional undercooling, and curvature undercooling, modeling of steady-state lamellar eutectic growth was achieved. A systematic investigation of the eutectic growth morphology and lamellar spacing of the Mg-Al eutectic was carried out under directional solidification with different undercoolings, initial lamellar spacings, temperature gradients, and growth velocities. The results showed that under the interaction between solute diffusion and surface energy, the adjustment of eutectic lamellar spacing was accomplished by nucleation, lamellar branching, lamellar termination, and overgrowth. The simulated results were consistent with both the experimental results and the Jackson-Hunt eutectic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech, Aedermannsdorf, Switzerland, 2005, p. 93.

  2. R. Elliott: Eutectic Solidification Processing: Crystalline and Glassy Alloys, Butterworth-Heinemann, Cornwall, UK, 1983, pp. 308-33.

    Google Scholar 

  3. V. Seetharaman and R. Trivedi: Metall. Trans. A, 1988, vol. 19A, pp. 2955-64.

    CAS  Google Scholar 

  4. K.A. Jackson and J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129-42.

    CAS  Google Scholar 

  5. L.F. Donaghey and W.A. Tiller: Mater. Sci. Eng., 1968, vol. 3, pp. 231-39.

    Article  CAS  Google Scholar 

  6. D.J. Fisher and W. Kurz: Acta Metall., 1980, vol. 28, pp. 777-94.

    Article  CAS  Google Scholar 

  7. P. Magnin and R. Trivedi: Acta Metall. Mater., 1991, vol. 39, pp. 453-67.

    Article  CAS  Google Scholar 

  8. I. Steinbach and F. Pezzolla: Physica D, 1999, vol. 134, pp. 385-93.

    Article  Google Scholar 

  9. B. Nestler and A.A. Wheeler: Physica D, 2000, vol. 138, pp. 114-33.

    Article  CAS  Google Scholar 

  10. S.G. Kim, W.T. Kim, T. Suzuki, and M. Ode: J. Cryst. Growth, 2004, vol. 261, pp. 135-58.

    Article  CAS  Google Scholar 

  11. Y.C. Zhu, J.C. Wang, G.C. Yang, and Y.J. Yang: Acta Phys. Sin., 2007, vol. 56, pp. 5542-47.

    CAS  Google Scholar 

  12. C.A. Gandin and M. Rappaz: Acta Metall. Mater., 1994, vol. 42, pp. 2233-46.

    Article  CAS  Google Scholar 

  13. L. Nastac: Acta Mater., 1999, vol. 47, pp. 4253-62.

    Article  CAS  Google Scholar 

  14. L. Beltran-Sanchez and D.M. Stefanescu: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2471-85.

    Article  CAS  Google Scholar 

  15. W. Wang, P.D. Lee, and M. McLean: Acta Mater., 2003, vol. 51, pp. 2971-87.

    Article  CAS  Google Scholar 

  16. S.G.R. Brown: J. Mater. Sci., 1998, vol. 33, pp. 4769-73.

    Article  CAS  Google Scholar 

  17. M.F. Zhu and C.P. Hong: Phys. Rev. B, 2002, vol. 66, pp. 155428/1–155428/8.

  18. M.F. Zhu and C.P. Hong: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1555-63.

    Article  CAS  Google Scholar 

  19. T. Himemiya, K. Ohsasa, and T. Saga: Mater. Trans., 2010, vol. 51, pp. 110-15.

    Article  CAS  Google Scholar 

  20. R.M. Wang, A. Eliezer, and E.M. Gutman: Mater. Sci. Eng. A, 2003, vol. 355, pp. 201-07.

    Article  Google Scholar 

  21. J.P. Weiler, J.T. Wood, R.J. Klassen, R. Bermortel, and G. Wang: Mater. Sci. Eng. A, 2006, vol. 419, pp. 297-305.

    Article  Google Scholar 

  22. J. Zhang and L.H. Lou: J. Mater. Sci. Tech., 2007, vol. 23, pp. 289-300.

    Google Scholar 

  23. G.D. Gu, Y.Y. Chen, and G.Y. An: J. Astronaut., 1988, vol. 9, pp. 53-60.

    Google Scholar 

  24. M.D. Nave, A.K. Dahle, and D.H. St John: Int. J. Cast Met. Res., 2000, vol. 13, pp. 1–7.

  25. T.B. Massalski: Binary Alloy Phase Diagrams, Ed. W.W. Scott, Jr., ASM, Materials Park, OH, 1986, pp. 129-31.

    Google Scholar 

  26. H.W. Weart and D.J. Mack: Trans. TMS-AIME, 1958, vol. 212, pp. 664-70.

    CAS  Google Scholar 

  27. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444-51.

    Article  Google Scholar 

  28. A. Jacot and M. Rappaz: Acta Mater., 2002, vol. 50, pp. 1909-26.

    Article  CAS  Google Scholar 

  29. P. Magnin and W. Kurz: Acta Metall., 1987, vol. 35, pp. 1119-28.

    Article  CAS  Google Scholar 

  30. L. Beltran-Sanchez and D.M. Stefanescu: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 367-82.

    Article  CAS  Google Scholar 

  31. L. Nastac and D.M. Stefanescu: Modell. Simul. Mater. Sci. Eng., 1997, vol. 5, pp. 391-420.

    Article  CAS  Google Scholar 

  32. P. Magnin, J.T. Mason, and R. Trivedi: Acta Metall. Mater., 1991, vol. 39, pp. 469-80.

    Article  CAS  Google Scholar 

  33. R. Willnecker, D.M. Herlach, and B. Feuerbacher: Phys. Rev. Lett., 1989, vol. 62, pp. 2707-10.

    Article  CAS  Google Scholar 

  34. E. Çadirli and M. Gündüz: J. Mater. Process. Tech., 2000, vol. 97, pp. 74-81.

    Article  Google Scholar 

  35. A.S. Yue: Trans. TMS-AIME, 1962, vol. 224, pp. 1010-15.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National High Technology Research and Development Program of China (Grant No. 2009AA03Z114) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX04014-082) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-mei Xiong.

Additional information

Manuscript submitted November 24, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Sm., Wu, Mw. Experimental and Modeling Studies of the Lamellar Eutectic Growth of Mg-Al Alloy. Metall Mater Trans A 43, 208–218 (2012). https://doi.org/10.1007/s11661-011-0831-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0831-8

Keywords

Navigation