Skip to main content
Log in

Martensitic Transformation During Cold Rolling Deformation of an Austenitic Fe-26Mn-0.14C Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A high-Mn austenitic steel was deformed in cold rolling to study the martensitic transformation and microstructure using X-ray diffraction and electron backscatter diffraction. Despite heavy deformation of 70 pct reduction (1.2 true strain), α′-martensite could not be induced in this alloy, but about 90 pct of the austenite transformed to ε-martensite. However, a small fraction (~4 pct) of α′-martensite could be observed when the same alloy was subjected to low strain compression tests in a Gleeble simulator. The stability of ε-martensite was attributed to the increase in stacking fault energy of the steel, expected to be more than 20 mJ/m2 because of the increase in temperature during the cold rolling deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438-46.

    Article  CAS  Google Scholar 

  2. L. Bracke, G. Mertens, J. Penning, B.C. De Cooman, M. Liebeherr, and N. Akdut: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 307-17.

    Article  CAS  Google Scholar 

  3. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vols. 387-9, pp. 158-62.

    Google Scholar 

  4. Y.S. Han and S.H. Hong: Mater. Sci. Eng. A, 1997, vol. 222, pp. 76-83.

    Article  Google Scholar 

  5. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishig: Scripta Mater., 2008, vol. 59, pp. 963-66.

    Article  CAS  Google Scholar 

  6. L.G. Stepanskiy: Scripta Mater., 2009, vol. 61, pp. 947-50.

    Article  CAS  Google Scholar 

  7. V.H. Schumann: Neue Hütte, 1972, vol. 17, pp. 605-09.

    CAS  Google Scholar 

  8. Y. Lü, B. Hutchinson, D.A. Molodov, and G. Gottstein: Acta Mater., 2010, vol. 58, pp. 3079-90.

    Article  Google Scholar 

  9. A.S. Hamada, L.P. Karjalainen, and M.C. Somani: Mater. Sci. Eng. A, 2007, vol. 467, pp. 114-24.

    Article  Google Scholar 

  10. G.B. Olson and M. Cohen: J. Less Common Met., 1972, vol. 28, pp. 107-18.

    Article  CAS  Google Scholar 

  11. L. Bracke, L. Kestens, and J. Penning: Scripta Mater., 2007, vol. 57, pp. 385-88.

    Article  CAS  Google Scholar 

  12. B.E. Warren and B.L. Averbach: J. Appl. Phys., 1950, vol. 21, pp. 595-99.

    Article  CAS  Google Scholar 

  13. H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65-71.

    Article  CAS  Google Scholar 

  14. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108-18.

    Article  CAS  Google Scholar 

  15. T. Shintani and Y. Murata: Acta Mater., 2011, vol. 59, pp. 4314-22.

    Article  CAS  Google Scholar 

  16. G. Dini, A. Najafizadeh, S.M. Monir-Vaghefi, and R. Ueji: J. Mater. Sci. Tech., 2010, vol. 26, pp. 181-86.

    Article  CAS  Google Scholar 

  17. M. Pozuelo, J.E. Wittig, J.A. Jiménez, and G. Frommeyer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1826-34.

    Article  CAS  Google Scholar 

  18. R.J. Hill: The Rietveld Method, Ed. R.A. Young, Oxford University Press, Oxford, UK, 1993.

  19. L. Lutterotti: MAUD, version 2.038, http://www.ing.unitn.it/~luttero/maud, 2006.

  20. R.A. Young: The Rietveld Method, Ed. R.A. Young, Oxford University Press, Oxford, UK, 1993.

  21. G. Caglioti, A. Paoletti, and F.P. Ricci: Nucl. Instrum. Meth., 1958, vol. 35, pp. 223-28.

    Google Scholar 

  22. J.G.M. Van Berkum, G.J.M. Sprong, Th.H. de Keijser, R. Delhez, and E.J. Sonneveld: Powder Diffr., 1995, vol. 10, pp. 129-39.

    Google Scholar 

  23. L. Lutterotti, P. Scardi, and P. Maitrelli: J. Appl. Crystallogr., 1990, vol. 23, pp. 246-52.

    Article  CAS  Google Scholar 

  24. P. Sahu, A.S. Hamada, S. Ghosh Chowdhury, and L.P. Karjalainen: J. Appl. Crystallogr., 2007, vol. 40, pp. 354-61.

    Article  CAS  Google Scholar 

  25. P. Sahu, A.S. Hamada, R.N. Ghosh, and L.P. Karjalainen: Metall. Mater. Trans. A, 2007, vol. 42A, pp. 1991-2000.

    Article  Google Scholar 

  26. A.S. Hamada, P. Sahu, S. Ghosh Chowdhury, L.P. Karjalainen, J. Levoska, and T. Oittinen: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 462-65.

    Article  CAS  Google Scholar 

  27. N.C. Popa: J. Appl. Crystallogr., 1998, vol. 31, pp. 176-80.

    Article  CAS  Google Scholar 

  28. B.E. Warren: X-Ray Diffraction, Addison-Wesley, Reading, UK, 1969.

    Google Scholar 

  29. E. Prince: The Rietveld Method, Ed. R.A. Young, Oxford University Press, Oxford, UK, 1993.

  30. Q. Dai, R. Yang, and K. Chen: Mater. Charact., 1999, vol. 42, pp. 21-26.

    Article  CAS  Google Scholar 

  31. K. Datta, R. Delhez, P.M. Bronsveld, J. Beyer, H.J.M. Geijselaers, and J. Post: Acta Mater.,2009, vol. 57, pp. 3321-26.

    Article  CAS  Google Scholar 

  32. X. Liang, J.R. Mc Dermid, O. Bouaziz, X. Wang, J.D. Embury, and H.S. Zurob: Acta Mater., 2009, vol. 57, pp. 3978-88.

    Article  CAS  Google Scholar 

  33. J.A. Venables: Phil. Mag., 1962, vol. 7, pp. 35-44.

    Article  Google Scholar 

  34. T. Lee, C. Oh, and S. Kim: Scripta Mater., 2008, vol. 58, pp. 110-13.

    Article  CAS  Google Scholar 

  35. C.S. Smith and E.E. Stickley: Phys. Rev., 1943, vol. 64, pp 191-98.

    Article  CAS  Google Scholar 

  36. W. Vandermeulen, M. Scibetta, A. Leenaers, J. Schuurmans, and R. Gérard: J. Nucl. Mater., 2008, vol. 372, pp. 249-55.

    Article  CAS  Google Scholar 

  37. V. Novák and P. Šittner: Mater. Sci. Eng. A, 2004, vol. 378, pp. 490-98.

    Article  Google Scholar 

  38. G.W. Powell, E.R. Marshall, and W.A. Backofen: ASM Trans. Q., 1958, vol. 50, pp. 478-79.

    Google Scholar 

  39. T. Iwamoto, T. Tsuta, and Y. Tomita: Int. J. Mech. Syst. Sci. Eng., 1998, vol. 40, pp. 173-82.

    Article  Google Scholar 

  40. M.R. Rocha and C.A.S. de Oliveira: Mater. Sci. Eng. A, 2009, vol. 517, pp. 281-85.

    Article  Google Scholar 

  41. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science, Oxford, UK, 2004.

    Google Scholar 

  42. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A 2009, vol. 40A, pp. 3076-90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sahu.

Additional information

Manuscript submitted September 13, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, P., Hamada, A.S., Sahu, T. et al. Martensitic Transformation During Cold Rolling Deformation of an Austenitic Fe-26Mn-0.14C Alloy. Metall Mater Trans A 43, 47–55 (2012). https://doi.org/10.1007/s11661-011-0818-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0818-5

Keywords

Navigation