Abstract
(Al85Ni5Y8Co2)98Bi2 and (Al85Ni5Y8Co2)98(Bi50Pb50)2 alloys are rapidly solidified using the single-roller melt-spinning method. Al85Ni5Y8Co2 amorphous matrix composites containing faceted BiY particles are synthesized by the liquid-solid reaction between added bismuth and constituents of the molten Al-Ni-Y-Co glass-forming alloy. The microstructure of the rapidly quenched (Al85Ni5Y8Co2)98(Bi50Pb50)2 multiphase composites consists of Al-based amorphous matrix and crystalline Pb-rich and BiY particles. The Pb-rich particles stem from liquid-liquid and monotectic reactions induced by lead addition. The phase constitution and microstructure are investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The reaction-induced crystalline BiY and Pb-rich particles are uniformly distributed in the amorphous matrix. The microstructure formation of the rapidly quenched alloys was discussed.
This is a preview of subscription content, access via your institution.






References
Y. He, S.J. Poon, and G.J. Shiflet: Science, 1988, vol. 241, pp. 1640–42.
A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27, pp. L280–L282.
A. Inoue: Prog. Mater. Sci., 1998, vol. 43, pp. 365–520.
A. Inoue, N. Matsumoto, and T. Masumoto: Mater. Trans. JIM, 1990, vol. 31, pp. 493– 500.
B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, and E. Ma: Scripta Mater., 2009, vol. 61, pp. 423–26.
A.P. Tsai, N. Chandrasekhar, and K. Chattopadhyay: Appl. Phys. Lett., 1999, vol. 75, pp. 1527–28.
A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari: Nat. Mater., 2003, vol. 2, pp. 661–62.
F. Prima, M. Tomut, I. Stone, B. Cantor, D. Janickonic, G. Vlasak, and P. Svec: Mater. Sci. Eng. A, 2004, vol. 375, pp. 772–75.
H. Choi-Yim, R.D. Conner, F. Szuecs, and W.L. Johnson: Acta Mater., 2002, vol. 50, pp. 2737–45.
M.L. Wang, G.L. Chen, X.D. Hui, Y. Zhang, and Z.Y. Bai: Intermetallics, 2007, vol. 15, pp. 1309–15.
C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.
G.Y. Wang, P.K. Liaw, A. Peter, M. Freels, W.H. Peter, R.A. Buchanan, and C.R. Brooks: Intermetallics, 2006, vol. 14, pp. 1091–97.
D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085–89.
A. Inoue: Mater. Sci. Eng. A, 1994, vols. l79–180, pp. 57–61.
H. Nitsche, F. Sommer, and E.J. Mittemeijer: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 621–32.
R.J. Hebert and J.H. Perepezko: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1804–11.
R. Sahu, S. Chatterjee, and K.L. Sahoo: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 861–69.
N. Boucharat, H. Rosner, and G. Wilde: Mater. Sci. Eng. A, 2007, vols. 449–451, pp. 640–43.
J. He, H.Q. Li, J.Z. Zhao, and C.L. Dai: Appl. Phys. Lett., 2008, vol. 93, p. 131907.
X.D. Hui, Y.S. Yang, X.M. Chen, and Z.Q. Hu: Acta Metall. Sinica, 1999, vol. 35, pp. 1206–10.
I. Minkoff: Solidification and Cast Structure, John Wiley and Sons, Chichester, 1986, pp. 13–35.
W. Kurz and D.J. Fisher: Fundamental of Solidification, 3th ed., Trans Tech Publications, Zurich, United Kingdom, 1992.
K.B. Hyde, A.F. Norman, and P.B. Prangnell: Acta Mater., 2001, vol. 49, pp. 1327–37.
F.R. Deboer, R. Boom, W.C.M. Matterns, A.R. Miedema, and A.K. Niessen: Cohesion and Structure, 1st ed., Elsevier Science, Amsterdam, 1988.
A.J. Mcalister: J. Phase Equilibria, 1984, vol. 5, pp. 247–50.
K.A. Gschneidner and F.W. Calderwood: J. Phase Equilibria, 1989, vol. 10, pp. 455–57.
A. Inoue, N. Matsumoto, and T. Masumoto: Mater. Trans. JIM, 1990, vol. 31, pp. 493–500.
J. He, H.Q. Li, B.J. Yang, J.Z. Zhao, H.F. Zhang, and Z.Q. Hu: J. Alloys Compd., 2010, vol. 489, pp. 535–40.
J. He, J.Z. Zhao, and L. Ratke: Acta Mater., 2006, vol. 54, pp. 1749–57.
R.N, Grugel, T.A. Lograsso, and A. Hellawell: Metall. Trans. A, 1984, vol. 15A, pp. 1003–12.
A. Kamio, S. Kumai, and H. Tezuka: Mater. Sci. Eng. A, 1991, vol. 146, pp. 105–21.
L. Ratke and S. Diefenbach: Mater. Sci. Eng. R, 1995, vol. 15, pp. 263–347.
Acknowledgments
One of the authors (JH) gratefully acknowledges the financial support from the Knowledge Innovation Program of the Chinese Academy of Sciences, National Natural Science Foundation of China (Grant No. 50704032), and the Alexander von Humboldt Foundation. Special thanks are due to Professor L. Ratke for his valuable comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted March 26, 2011.
Rights and permissions
About this article
Cite this article
He, J., Jiang, H., Zhao, J. et al. AlNiYCo Amorphous Matrix Composites Induced by Bismuth and Lead Additions. Metall Mater Trans A 42, 4100–4105 (2011). https://doi.org/10.1007/s11661-011-0815-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-011-0815-8
Keywords
- Amorphous Matrix
- White Particle
- 98Bi2 Alloy
- Monotectic Reaction
- Scan Electron Microscopy Backscatter Electron