Skip to main content

Advertisement

Log in

Ultra-Small-Angle X-ray Scattering—X-ray Photon Correlation Spectroscopy: A New Measurement Technique for In-Situ Studies of Equilibrium and Nonequilibrium Dynamics

  • Symposium: Neutron and X-Ray Studies of Advanced Materials IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultra-small-angle X-ray scattering—X-ray photon correlation spectroscopy (USAXS-XPCS) is a new measurement technique for the study of equilibrium and slow nonequilibrium dynamics in disordered materials. This technique fills a gap between the accessible scattering vector ranges of dynamic light scattering (DLS) and XPCS. It also overcomes the limits of visible light scattering techniques imposed by multiple scattering and is suitable for the study of optically opaque materials containing near-micrometer-sized structures. In this article, we present an overview of the important technical aspects of USAXS-XPCS and offer a few examples as well as future outlooks to illustrate the capability of USAXS-XPCS for monitoring equilibrium and nonequilibrium dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Certain trade names and company products are mentioned in the text or identified in illustrations in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.

References

  1. P.M. Chaikin and T.C. Lubensky: Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, United Kingdom, 2000.

    Google Scholar 

  2. A.J. Allen: J. Am. Ceram. Soc., 2005, vol. 88, pp. 1367–81.

    Article  CAS  Google Scholar 

  3. G. Grübel and F. Zontone: J. Alloys Compd., 2004, vol. 362, pp. 3–11.

    Article  Google Scholar 

  4. B.J. Berne and R. Pecora: Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Dover Publications, Inc., Mineola, New York, NY, 2000.

    Google Scholar 

  5. F. Livet: Acta Crystallogr. Sect. A, 2007, vol. 63, pp. 87–107.

    Article  Google Scholar 

  6. M. Sutton: Comptes Rendus Phys., 2008, vol. 9, pp. 657–67.

    Article  CAS  Google Scholar 

  7. J.W. Goodman: Statistical Optics, Wiley-Interscience, New York, NY, 1985.

    Google Scholar 

  8. M. Sutton, S.G.J. Mochrie, T. Greytak, S.E. Nagler, L.E. Berman, G.A. Held, and G.B. Stephenson: Nature, 1991, vol. 352, pp. 608–10.

    Article  Google Scholar 

  9. S.B. Dierker, R. Pindak, R.M. Fleming, I.K. Robinson, and L. Berman: Phys. Rev. Lett., 1995, vol. 75, pp. 449–52.

    Article  CAS  Google Scholar 

  10. D.L. Abernathy, G. Grübel, S. Brauer, I. McNulty, G.A. Stephenson, S.G.J. Mochrie, A.R. Sandy, N. Mulders, and M. Sutton: J. Synchrotron Rad., 1998, vol. 5, pp. 37–47.

    Article  CAS  Google Scholar 

  11. A.R. Sandy, L.B. Lurio, S.G.J. Mochrie, A. Malik, G.B. Stephenson, J.F. Pelletier, and M. Sutton: J. Synchrotron Rad., 1999, vol. 6, pp. 1174–84.

    Article  Google Scholar 

  12. T. ThurnAlbrecht, W. Steffen, A. Patkowski, G. Meier, E.W. Fischer, G. Grübel, and D.L. Abernathy: Phys. Rev. Lett., 1996, vol. 77, pp. 5437–40.

    Article  CAS  Google Scholar 

  13. L.B. Lurio, D. Lumma, A.R. Sandy, M.A. Borthwick, P. Falus, S.G.J. Mochrie, J.F. Pelletier, M. Sutton, L. Regan, A. Malik, and G.B. Stephenson: Phys. Rev. Lett., 2000, vol. 84, pp. 785–88.

    Article  CAS  Google Scholar 

  14. A.J. Banchio, J. Gapinski, A. Patkowski, W. Haussler, A. Fluerasu, S. Sacanna, P. Holmqvist, G. Meier, M.P. Lettinga, and G. Nagele: Phys. Rev. Lett., 2006, vol. 96, p. 138303.

    Article  Google Scholar 

  15. C. Caronna, Y. Chushkin, A. Madsen, and A. Cupane: Phys. Rev. Lett., 2008, vol. 100, p. 055702.

    Article  Google Scholar 

  16. A. Poniewierski, R. Holyst, A.C. Price, L.B. Sorensen, S.D. Kevan, and J. Toner: Phys. Rev. E, 1998, vol. 58, pp. 2027–40.

    Article  CAS  Google Scholar 

  17. A. Madsen, J. Als-Nielsen, and G. Grübel: Phys. Rev. Lett., 2003, vol. 90, p. 085701.

    Article  Google Scholar 

  18. R. Bandyopadhyay, D. Liang, H. Yardimci, D.A. Sessoms, M.A. Borthwick, S.G.J. Mochrie, J.L. Harden, and R.L. Leheny: Phys. Rev. Lett., 2004, vol. 93, p. 228302.

    Article  CAS  Google Scholar 

  19. B. Chung, S. Ramakrishnan, R. Bandyopadhyay, D. Liang, C.F. Zukoski, J.L. Harden, and R.L. Leheny: Phys. Rev. Lett., 2006, vol. 96, p. 228301.

    Article  CAS  Google Scholar 

  20. A. Robert, E. Wandersman, E. Dubois, V. Dupuis, and R. Perzynski: Europhys. Lett., 2006, vol. 75, pp. 764–70.

    Article  CAS  Google Scholar 

  21. X.H. Lu, S.G.J. Mochrie, S. Narayanan, A.R. Sandy, and M. Sprung: Phys. Rev. Lett., 2008, vol. 100, p. 045701.

    Article  Google Scholar 

  22. A. Malik, A.R. Sandy, L.B. Lurio, G.B. Stephenson, S.G.J. Mochrie, I. McNulty, and M. Sutton: Phys. Rev. Lett., 1998, vol. 81, pp. 5832–35.

    Article  CAS  Google Scholar 

  23. F. Livet, F. Bley, R. Caudron, E. Geissler, D. Abernathy, C. Detlefs, G. Grübel, and M. Sutton: Phys. Rev. E, 2001, vol. 63, p. 036108.

    Article  CAS  Google Scholar 

  24. K.A. Nugent: Adv. Phys., 2010, vol. 59, pp. 1–99.

    Article  Google Scholar 

  25. A.J. Allen, P.R. Jemian, D.R. Black, H.E. Burdette, R.D. Spal, S. Krueger, and G.G. Long: Nucl. Instrum. Meth. Phys. Res. Sect. A, 1994, vol. 347, pp. 487–90.

    Article  Google Scholar 

  26. F. Zhang and J. Ilavsky: Polymer Rev., 2010, vol. 50, pp. 59–90.

    Article  CAS  Google Scholar 

  27. T. Narayanan: Curr. Opin. Coll. Interface Sci., 2009, vol. 14, pp. 409–15.

    Article  CAS  Google Scholar 

  28. F. Zhang, A.J. Andrew, L.E. Levine, J. Ilavsky, G.G. Long, and A.R. Sandy: J. Appl. Crystallogr., 2011, vol. 44, pp. 200–12.

    Article  CAS  Google Scholar 

  29. J. Ilavsky, P.R. Jemian, A.J. Allen, F. Zhang, L.E. Levine, and G.G. Long: J. Appl. Crystallogr., 2009, vol. 42, pp. 469–79.

    Article  CAS  Google Scholar 

  30. M. Sztucki, J. Gorini, J.-P. Vassalli, L. Goirand, P. van Vaerenbergh, and T. Narayanan: J. Synchrotron Rad., 2008, vol. 15, pp. 341–49.

    Article  CAS  Google Scholar 

  31. D. Petrascheck: Physica B & C, 1988, vol. 151, p. 171.

    Article  Google Scholar 

  32. F. Scheffold and P. Schurtenberger: Soft Mater., 2003, vol. 1, pp. 139–65.

    Article  Google Scholar 

  33. L. Cipelletti and L. Ramos: J. Phys.: Condens. Mater., 2005, vol. 17, pp. R253–R285.

    Article  CAS  Google Scholar 

  34. C. Gutt, T. Ghaderi, M. Tolan, S.K. Sinha, and G. Grübel: Phys. Rev. B, 2008, vol. 77, p. 094133.

    Article  Google Scholar 

  35. D. Lumma, L.B. Lurio, M.A. Borthwick, P. Falus, and S.G.J. Mochrie: Phys. Rev. E, 2000, vol. 62, pp. 8258–69.

    Article  CAS  Google Scholar 

  36. H.Y. Guo, G. Bourret, M.K. Corbierre, S. Rucareanu, R.B. Lennox, K. Laaziri, L. Piche, M. Sutton, J.L. Harden, and R.L. Leheny: Phys. Rev. Lett., 2009, vol. 102, p. 075702.

    Article  Google Scholar 

  37. J.W. Miao, P. Charalambous, J. Kirz, and D. Sayre: Nature, 1999, vol. 400, pp. 342–44.

    Article  CAS  Google Scholar 

  38. D. Lumma, L.B. Lurio, S.G.J. Mochrie, and M. Sutton: Rev. Sci. Instrum., 2000, vol. 71, pp. 3274–89.

    Article  CAS  Google Scholar 

  39. M.S. Pierce, R.G. Moore, L.B. Sorensen, S.D. Kevan, O. Hellwig, E.E. Fullerton, and J.B. Kortright: Phys. Rev. Lett., 2003, vol. 90, p. 175502.

    Article  Google Scholar 

  40. F. Zhang, A.J. Allen, L.E. Levine, L. Espinal, J.M. Antonucci, D. Skrtic, J.N.R. O’Donnell, and J. Ilavsky: J. Biomed. Mater. Res., 2011, submitted.

  41. D. Skrtic and J.M. Antonucci: Biomaterials, 2003, vol. 24, pp. 2881–88.

    Article  CAS  Google Scholar 

  42. D. Skrtic, J.M. Antonucci, E.D. Eanes, and N. Eldelman: Biomaterials, 2004, vol. 25, pp. 1141–50.

    Article  CAS  Google Scholar 

  43. M.H.G. Duits, R.P. May, A. Vrij, and C.G. Dekruif: J. Chem. Phys., 1991, vol. 94, pp. 4521–31.

    Article  CAS  Google Scholar 

  44. F. Zhang, G.G. Long, P.R. Jemian, J. Ilavsky, V.T. Milam, and J.A. Lewis: Langmuir, 2008, vol. 24, pp. 6504–08.

    Article  CAS  Google Scholar 

  45. B.J. Anderson, V. Gopalakrishnan, S. Ramakrishnan, and C.F. Zukoski: Phys. Rev. E, 2006, vol. 73, p. 031407.

    Article  CAS  Google Scholar 

  46. C.A. Grabowski, B. Adhikary, and A. Mukhopadhyay: Appl. Phys. Lett., 2009, vol. 94, p. 021903.

    Article  Google Scholar 

  47. S.G.J. Mochrie, A.M. Mayes, A.R. Sandy, M. Sutton, S. Brauer, G.B. Stephenson, D.L. Abernathy, and G. Grübel: Phys. Rev. Lett., 1997, vol. 78, pp. 1275–78.

    Article  CAS  Google Scholar 

  48. G. Lacroix, T. Pardoen, and P.J. Jacques: Acta Mater., 2008, vol. 56, pp. 3900–13.

    Article  CAS  Google Scholar 

  49. M. Palacios and F. Puertas: J. Am. Ceram. Soc., 2006, vol. 89, pp. 3211–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J.M. Antonucci, D. Skrtic, and J.N.R. O’Donnell, NIST’s Polymers Division, for preparing the dental composite samples. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under Grant No. NSF/CHE-0822838. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ilavsky.

Additional information

Manuscript submitted February 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Allen, A.J., Levine, L.E. et al. Ultra-Small-Angle X-ray Scattering—X-ray Photon Correlation Spectroscopy: A New Measurement Technique for In-Situ Studies of Equilibrium and Nonequilibrium Dynamics. Metall Mater Trans A 43, 1445–1453 (2012). https://doi.org/10.1007/s11661-011-0790-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0790-0

Keywords

Navigation