Skip to main content
Log in

Characterization and High-Temperature Oxidation Behavior of Cold-Sprayed Ni-20Cr and Ni-50Cr Coatings on Boiler Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructure and mechanical properties of cold-spray coatings are usually required in order to explore the potential industrial application of the latter. This article demonstrates the successful formulation of Ni-20Cr and Ni-50Cr coatings on two boiler steels, namely, SAE 213-T22 and SA 516 steel by cold-spray process. The microstructure, coating thickness, phase formation, and microhardness properties of the coatings were evaluated. The coatings were subjected to cyclic heating and cooling cycles at an elevated temperature of 1173.15 K (900 °C) to ascertain their high-temperature oxidation behavior. Moreover, these cyclic exposures can give useful information regarding the adhesion of the coatings with the substrate steels. Of all the coatings, the Ni-50Cr coating on SA 516 steel had a maximum average hardness value of 469 Hv. As observed from the surface field emission–scanning electron microscopy (FE-SEM) analysis, the coatings were found to have nearly dense microstructure with the sprayed particles in interlocked positions. It was concluded that the cold-spray process is suitable for spraying the preceding powders onto the given boiler steels to produce nearly dense and low oxide coatings. The coatings, in general, were found to follow the parabolic rate of oxidation and were successful in maintaining their surface contact with their respective substrate steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. T. Stoltenhoff, H. Kreye, H.J. Richter, and H. Assadi: in Optimization of the Cold Spray Process, Thermal Spray 2001: New Surfaces for a Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, eds., ASM INTERNATIONAL, Materials Park, OH, 2001, pp. 409–16.

    Google Scholar 

  2. J. Karthikeyan: “Cold Spray Technology: International Status and USA Efforts: A Report,” ASB Industries, Inc., Barberton, OH, 2004, pp. 1–14.

  3. R.C. Mccune, A.N. Papyrin, J.N. Hall, W.L. Riggs II, and P.H. Zajchowski: in Advances in Thermal Spray Science and Technology, C. Berndt and S. Sampath, eds., ASM INTERNATIONAL, Materials Park, OH, 1995.

    Google Scholar 

  4. Futuretech: Cold Gas-Dynamic Spray Method, John Wiley and Sons, Englewood, NJ, Aug. 1998, No. 224.

  5. A.P. Alkhimov, V.F. Kosarev, N.I. Nesterovich, A.N. Papyrin, and M.M. Shushpanov: US Patent No. 5,302,414, Apr. 12, 1994.

  6. R.C. Dykhuizen and M.F Smith: J. Therm. Spray Technol., 1998, vol. 7 (2), pp. 205–12.

    Article  CAS  Google Scholar 

  7. V. Shukla, G. Elliott, and B. Kear: 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 11–14, American Inst. of Aeronautics and Astronautics, Reston, VA, 1999, p. 1.

  8. R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann, and C.C. Berndt: Thin Solid Films, 2002, vol. 416, pp. 129–35.

    Article  CAS  Google Scholar 

  9. R. Knight and R.W. Smith: Thermal Spray: Int. Advances in Coatings Technology, Orlando, FL, May 25–June 5, 1992, C.C. Berndt, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, p. 159.

  10. M.R. Dorfman and J.A. DeBarro: Thermal Spraying: Current and Future Trends, Kobe, Japan, May 22–26, 1995, Akira Ohmori, ed., High Temperature Society of Japan, 1995, p. 567.

  11. H. Edris, D.G. McCartney, and A.J. Sturgeon: J. Mater. Sci., 1997, vol. 32, pp. 863–72.

    Article  CAS  Google Scholar 

  12. N. Bala, H. Singh, and S. Prakash: Appl. Surf. Sci., 2009, vol. 255 (15), pp. 6862–69.

    Article  CAS  Google Scholar 

  13. W.M. Zhao, Y. Wang, T. Han, K.Y. Wu, and J. Xue: Surf. Coat. Technol., 2004, vol. 183, pp. 118–25.

    Article  CAS  Google Scholar 

  14. W.M. Zhao, Y. Wang, L.X. Dong, K.Y. Wu, and J. Xue: Surf. Coat. Technol., 2005, vol. 190, pp. 293–98.

    Article  CAS  Google Scholar 

  15. R.C. Tucker, Jr.: in Handbook of Deposition Technologies for Films and Coatings, R.F. Bunshah, ed., Noyes Pub., Park Ridge, NJ/William Andrew Publishing, LLC, Norwich, NY, 1994, p. 591.

    Google Scholar 

  16. V.H. Hidalgo, F.J.B. Varela, and E.F. Rico: Trib. Int., 1997, vol. 30 (9), pp. 641–49.

    Article  CAS  Google Scholar 

  17. V.H. Hidalgo, F.J.B. Varela, and A.C. Menendez: Proc. 15th Int. Thermal Spray Conf., Nice, France, May 25–29, ASM International, Novelty, OH, 1998, pp. 617–21.

  18. V.H. Hidalgo, F.J.B. Varela, S.P. Martinez, and S.G. Espana: Proc. United Thermal Spray Conf., Dusseldorf, Germany, DVS-Verlag, Germany, 1999, pp. 683–86.

  19. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin: in Cold Spray Technology, A. Papyrin, ed., Elsevier, New York, NY, 2007.

    Google Scholar 

  20. C. Verdon, A. Karimi, and J.L. Martin: Mater. Sci. Eng. A, 1998, vol. 246, pp. 11–24.

    Article  Google Scholar 

  21. H.M. Hawthorne, B. Arsenault, J.P. Immarigeon, J.G. Legoux, and V.R. Parameswaran: Wear, 1999, vols. 225–229, pp. 825–34.

    Article  Google Scholar 

  22. S. Sampath, X.Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya: Mater. Sci. Eng. A, 2004, vol. 364, pp. 216–31.

    Article  Google Scholar 

  23. B. Singh: Ph.D. Thesis, Indian Institute of Technology Roorkee, Roorkee, India, 2003.

  24. H. Singh: Ph.D. Thesis, Indian Institute of Technology Roorkee, Roorkee, India, 2005.

  25. H. Kaushal, H. Singh, and S. Prakash: Metall. Mater. Trans. A,, 2011, vol. 42A, pp. 1836–46.

    Article  Google Scholar 

  26. H.Y. Lee, H.Y. Young, C.L. Young, P.H. Young, and H.K. Kyung: J. Therm. Spray Technol., 2005, vol. 14 (2), pp. 183–86.

    Article  CAS  Google Scholar 

  27. J.R. Nicholls: JOM, 2000, Jan., pp. 28–35.

  28. S.N. Tiwari and S. Prakash: Proc. SOLCEC, Kalpakkam, India, Jan. 22–24, 1997, paper no. C33.

  29. A. Ul-Hamid: Mater. Chem. Phys., 2003, vol. 80, pp. 135–42.

    Article  CAS  Google Scholar 

  30. B.S. Sidhu and S. Prakash: Surf. Coat. Technol., 2003, vol. 166, pp. 89–100.

    Article  CAS  Google Scholar 

  31. D. Das, R. Balasubramaniam, and M.N. Mungole: J. Mater. Sci., 2002, vol. 37 (6), pp. 1135–42.

    Article  CAS  Google Scholar 

  32. Y. Longa-Nava, Y.S. Zhang, M. Takemoto, and R.A. Rapp: Corros., 1996, vol. 52 (9), pp. 680–89.

    Article  CAS  Google Scholar 

  33. G. Calvarin, R. Molins, and A.M. Huntz: Oxid. Met., 2000, vol. 53 (1–2), pp. 25–48.

    Article  CAS  Google Scholar 

  34. H. Singh, D. Puri, S. Prakash, and R. Maiti: Mater. Sci. Eng. A, 2007, vol. 464 (1), pp. 110–16.

    Article  Google Scholar 

  35. T.S. Sidhu: Ph.D. Thesis, Indian Institute of Technology Roorkee, Roorkee, India, 2006.

  36. H.S. Sidhu: Ph.D. Thesis, Punjab Technical University, Jalandhar, India, 2006.

  37. F.H. Stott and G.C. Wood: Mater. Sci. Technol., 1998, vol. 4, pp. 1072–78.

    Google Scholar 

  38. S.R.J. Saunders and J.R. Nicholls: Mater. Sci. Technol., 1998, vol. 5, pp. 780–98.

    Google Scholar 

  39. S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar: J. Alloys Compd., 2008, vol. 463 (1–2), pp. 358–72.

    Article  CAS  Google Scholar 

  40. F.H. Stott: Trib. Int., 1998, vol. 31 (1–3), pp. 61–71.

    Article  CAS  Google Scholar 

  41. U.K. Chatterjee, S.K. Bose, and S.K. Roy: Environmental Degradation of Metals, Marcel Dekker, New York, NY, 2001.

    Google Scholar 

  42. T. Sundararajan, S. Kuroda, T. Itagaki, and F. Abe: ISIJ Int., 2004, vol. 44, pp. 139–44.

    Article  CAS  Google Scholar 

  43. C. Burman and T. Ericsson: Proc. Symp. High-Temperature Protective Coatings, Atlanta, GA, Mar. 7–8, 1983, S.C. Singhal, ed., TMS-AIME, Warrendale, PA, 1983, pp. 51–59.

Download references

Acknowledgments

The authors thankfully acknowledge the research grant from the Council of Scientific and Industrial Research, New Delhi (File No. 22(0441)/07/EMR-II, dated October 23, 2007), for carrying out the R&D work on “Investigations on the role of cold-spray coatings to control hot corrosion of steam generating plants.” The authors express their sincere thanks to ASB Industries, Inc. (Barbeton, OH) and Guru Gobind Singh Super Thermal Power Plant (Ropar, India) for their kind cooperation during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Bala.

Additional information

Manuscript submitted September 21, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bala, N., Singh, H. & Prakash, S. Characterization and High-Temperature Oxidation Behavior of Cold-Sprayed Ni-20Cr and Ni-50Cr Coatings on Boiler Steels. Metall Mater Trans A 42, 3399–3416 (2011). https://doi.org/10.1007/s11661-011-0759-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0759-z

Keywords

Navigation