Skip to main content
Log in

Improved Creep Behavior of a High Nitrogen Nb-Stabilized 15Cr-15Ni Austenitic Stainless Steel Strengthened by Multiple Nanoprecipitates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenitic stainless steels are expected to be a major material for boiler tubes and steam turbines in future ultra-supercritical (USC) fossil power plants. It is of great interest to maximize the creep strength of the materials without increasing the cost. Precipitation strengthening was found to be the best and cheapest way for increasing the creep strength of such steels. This study is concerned with improving creep properties of a high nitrogen Nb-stabilized 15Cr-15Ni austenitic alloy through introducing a high number of nanosized particles into the austenitic matrix. The addition of around 4 wt pct Mn and 0.236 wt pct N into the 15Cr-15Ni-0.46Si-0.7Nb-1.25Mo-3Cu-Al-B-C matrix in combination with a special multicycled aging-quenching heat treatment resulted in the fine dispersion of abundant quantities of thermally stable (Nb,Cr,Fe)(C,N) precipitates with sizes of 10 to 20 nm. Apart from the carbonitrides, it was found that a high number of coherent copper precipitates with size 40 to 60 nm exist in the microstructure. Results of creep tests at 973 K and 1023 K (700 °C and 750 °C) showed that the creep properties of the investigated steel are superior compared to that of the commercial NF709 alloy. The improved creep properties are attributed to the improved morphology and thermal stability of the carbonitrides as well as to the presence of the coherent copper precipitates inside the austenitic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Wiswanathan, K. Coleman, and U. Rao: Int. J. Pressure Vess. Pip., 2006, vol. 83, pp. 778–83.

    Article  Google Scholar 

  2. T. Sourmail: Ph.D. thesis, University of Cambridge, London, 2001, pp. 12–26.

  3. R. Viswanathan and W.T. Bakker: J. Mater. Eng. Perf., 2001, vol. 10 (1), pp. 81–95.

    Article  CAS  Google Scholar 

  4. R. Rautio and S. Bruce: Adv. Mater. Proc., 2008, pp. 35–37.

  5. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997, p. 102.

  6. P.J. Masiasz, J.P. Shingledecker, B.A. Pint, N.D. Evans, Y. Yamamoto, K. More, and E. Lara-Curzio: J. Turbomachinery, 2006, vol. 128, pp. 814–19.

    Article  Google Scholar 

  7. Q. Wu: Ph.D. thesis, University of Cincinnati, Cincinnati, OH, 2006, pp. 81–155.

  8. D.J. Kotecki: Weld. Stainless Steels, 1993, pp. 678–707.

  9. J.P. Shingledecker, P.J. Maziasz, N.D. Evans, and M.J. Pollard: Int. J. Pressure Vess. Pip., 2007, vol. 84, pp. 21–28.

    Article  CAS  Google Scholar 

  10. S. Caminada, G. Cumino, L. Cipolla, D. Venditti, A. Di Gianfrancesco, Y. Minami, and T. Ono: Int. J. Pressure Vess. Pip., 2010, vol. 87, pp. 336–44.

  11. N. Shinya, J. Kyono, and K. Laha: J. Intell. Mater. Syst. Struct., 2006, vol. 17, pp. 1127–33.

    Article  CAS  Google Scholar 

  12. Y.K. Lee: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1913–17.

    Article  CAS  Google Scholar 

  13. D.R.G. Mitchell and S. Sulaiman: Mater. Charact., 2006, vol. 56, pp. 49–58.

    Article  CAS  Google Scholar 

  14. Copper: Proc. Int. Conf. Copper ’06—Better, J.-M. Welter, ed., Wiley-VCH, Weinheim, 2006, p. 67.

  15. E. Werner: Mater. Sci. Eng. A, 1988, vol. 101, pp. 93–98.

    Article  CAS  Google Scholar 

  16. T. Sourmail, H.K.D.H. Bhadeshia, and D.J.C. MacKay: Mater. Sci. Technol., 2002, vol. 18, pp. 655–63.

    Article  CAS  Google Scholar 

  17. J.S. Zhang, P.E. Li, W.X. Chen, and J.Z. Jin: Scripta Metall., 1989, vol. 23, pp. 547–51.

    Article  CAS  Google Scholar 

  18. F.T. Furillo, J.M. Davidson, and J.K. Tien: Mater. Sci. Eng., 1979, vol. 39, pp. 267–73.

    Article  CAS  Google Scholar 

  19. Y. Takahashi, T. Yamane, and H. Sasai: Trans. Jpn. Inst. Met., 1981, vol. 22 (12), pp. 865–72.

    CAS  Google Scholar 

  20. N.D. Evans, P.J. Maziasz, J.P. Shingledecker, and M.J. Pollard: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3032–40.

    Article  Google Scholar 

  21. J. Erneman, M. Sshwind, H.-O. Andren, J.-O. Nilsson, A. Wilson, and J. Agren: Acta Mater., 2006, vol. 54, pp. 67–76.

    CAS  Google Scholar 

  22. S. Kurokawa, J.E. Ruzzante, A.M. Hey, and F. Dyment: Met. Sci., 1983, vol. 17, pp. 433–38.

    Article  CAS  Google Scholar 

  23. V.V. Sumin, G. Chimid, T. Rashev, and L. Saryivanov: Mater. Sci. Forum, 1999, vol. 31, pp. 318–20.

    Google Scholar 

  24. N. Maruyama and G.D.W. Smith: Mater. Sci. Eng. A, 2002, vol. 327, pp. 34–39.

    Article  Google Scholar 

  25. Y.N. Chentsov: Met. Sci. Heat Treat., 1981, vol. 23 (1), pp. 69–72.

    Article  Google Scholar 

  26. J. Friedel: Dislocations, Pergamon Press, New York, NY, 1964, p. 454.

  27. E. Arzt and J. Rösler: Acta Metall., 1988, vol. 36 (4), pp. 1053–60.

    Article  CAS  Google Scholar 

  28. T. Kraft and P.M. Marcus: Phys. Rev. B, 1993, vol. 48 (9), pp. 5886–90.

    Article  CAS  Google Scholar 

  29. http://nims.gov.jp/matnavi/.

  30. H. Kimura and Y. Minami: Proc. Int. Conf. on Creep, 1986, pp. 221–26.

Download references

Acknowledgments

This research was supported by the Fundamental R&D Program of the Korea Institute of Science and Technology (KIST). The authors also express gratitude to the Materials/Devices Division of KIST as well as to the University of Science and Technology for providing facilities and a favorable environment to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu The Ha.

Additional information

Manuscript submitted February 3, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, V.T., Jung, W.S. & Suh, J.Y. Improved Creep Behavior of a High Nitrogen Nb-Stabilized 15Cr-15Ni Austenitic Stainless Steel Strengthened by Multiple Nanoprecipitates. Metall Mater Trans A 42, 3378–3385 (2011). https://doi.org/10.1007/s11661-011-0752-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0752-6

Keywords

Navigation