Skip to main content
Log in

Phase Constituents and Microstructure of Interaction Layer Formed in U-Mo Alloys vs Al Diffusion Couples Annealed at 873 K (600 °C)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

U-Mo dispersion and monolithic fuels are being developed to fulfill the requirements for research reactors, under the Reduced Enrichment for Research and Test Reactors program. In dispersion fuels, particles of U-Mo alloys are embedded in the Al-alloy matrix, while in monolithic fuels, U-Mo monoliths are roll bonded to the Al-alloy matrix. In this study, interdiffusion and microstructural development in the solid-to-solid diffusion couples, namely, U-15.7 at. pct Mo (7 wt pct Mo) vs pure Al, U-21.6 at. pct Mo (10 wt pct Mo) vs pure Al, and U-25.3 at. pct Mo (12 wt pct Mo) vs pure Al, annealed at 873 K (600 °C) for 24 hours, were examined in detail. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA) were employed to examine the development of a very fine multiphase interaction layer with an approximately constant average composition of 80 at. pct Al. Extensive TEM was carried out to identify the constituent phases across the interaction layer based on selected area electron diffraction and convergent beam electron diffraction (CBED). The cubic-UAl3, orthorhombic-UAl4, hexagonal-U6Mo4Al43, and cubic-UMo2Al20 phases were identified within the interaction layer that included two- and three-phase layers. Residual stress from large differences in molar volume, evidenced by vertical cracks within the interaction layer, high Al mobility, Mo supersaturation, and partitioning toward equilibrium in the interdiffusion zone were employed to describe the complex microstructure and phase constituents observed. A mechanism by compositional modification of the Al alloy is explored to mitigate the development of the U6Mo4Al43 phase, which exhibits poor irradiation behavior that includes void formation and swelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. RIGAKU DMAX-B is a trademark of Rigaku Corporation, Tokyo, Japan.

  2. HITACHI 3500N is a trademark of Hitachi Corporation, Tokyo, Japan.

  3. JEOL 733 SUPERPROBE is a trademark of Japan Electron Optics Ltd., Tokyo.

  4. FEI/TECNAI F30 is a trademark of FEI Company, Hillsboro, OR.

  5. FISCHIONE is a trademark of E.A. Fischione Instrument Inc, Export, PA.

  6. DIGITAL MICROGRAPH is a trademark of Gatan Inc, Pleasanton, CA.

References

  1. D.D. Keiser, Jr., S.L. Hayes, M.K. Meyer, and C.R. Clark: JOM, 2003, pp. 55–58.

  2. Federal Register, Rules and Regulations, 51, N37, Feb. 1986.

  3. A.E. Dwight: J. Nucl. Mater., 1960, vol. 2, pp. 81–87.

    Article  CAS  Google Scholar 

  4. O.S. Ivanov, T.A. Badaeva, R.M. Sofronova, V.B. Kishenevskii, and N.P. Kushnir: Phase Diagrams of Uranium Alloys, 1st ed., Amerind Publishing Co. Ltd., New Delhi, 1983, pp. 32–33.

    Google Scholar 

  5. O.S. Ivanov and Y.S. Virgiliev: J. Nucl. Mater., 1962, vol. 6, pp. 199–202.

    Article  CAS  Google Scholar 

  6. F.G. Streets and J.J. Stobe: J. Inst. Met., 1964, vol. 92, pp. 171–74.

    CAS  Google Scholar 

  7. L.I. Gomozov, E.M. Lyutina, and O.S. Ivanov: Izv. Akad. Nauk SSSR, Met., 1970, vol. 2.

  8. P.E. Repas, R.H. Goodenow, and R.F. Hehemann: Trans. ASM, 1964, vol. 57, pp. 150–63.

    CAS  Google Scholar 

  9. Y. Goldstein and A. Bar-Or: J. Inst. Met., 1967, vol. 95, pp. 17–21.

    CAS  Google Scholar 

  10. S.C. Parida, S. Dash, Z. Singh, R. Prasad, and V. Venugopal: J. Phys. Chem. Solids, 2001, vol. 62, pp. 585–97.

    Article  CAS  Google Scholar 

  11. J.-S. Lee, C.-H. Lee, K. H. Kim, and V. Em: J. Nucl. Mater., 2002, vol. 306, pp. 147–52.

    Article  CAS  Google Scholar 

  12. H.J. Ryu, Y.S. Han, J.M. Park, S.D. Park, and C.K. Kim: J. Nucl. Mater., 2003, vol. 321, pp. 210–20.

    Article  CAS  Google Scholar 

  13. H.J. Ryu, J.M. Park, C.K. Kim, and G.L. Hofman: J. Phase Equil. Diff., 2006, vol. 27, pp. 651–58.

    CAS  Google Scholar 

  14. K.H. Kim, D.B. Lee, C.K. Kim, and G.E. Hofman: J. Nucl. Mater., 0997, vol. 245, pp. 179–84.

    Article  Google Scholar 

  15. J.-S. Lee, C.-H. Lee, K.H. Kim, and V. Em: J. Nucl. Mater., 2000, vol. 280, pp. 116–19.

    Article  CAS  Google Scholar 

  16. B.-S. Seong, C.H. Lee, J.-S. Lee, H.-S. Shim, J.-H. Lee, K.H. Kim, C.K. Kim, and V. Em: J. Nucl. Mater., 2000, vol. 277, pp. 274–79.

    Article  CAS  Google Scholar 

  17. V.P. Sinha, G.J. Prasad, P.V. Hedge, R. Keswani, C.B. Basak, S. Pal, and G.P. Mishra: J. Alloys Compd., 2009, vol. 473, pp. 238–44.

    Article  CAS  Google Scholar 

  18. S.T. Konobeevsky, N.F. Pravdyuk, and V.I. Kutaitsev: Proc. Int. Conf. of the Peaceful Uses of Atomic Energy, United Nations, New York, 1956, vol. 7, pp. 433–40.

  19. S.T. Konobeevsky: J. Nucl. Energy, 1956, vol. 1, pp. 356–65.

    Google Scholar 

  20. M.L. Bleiberg, L.J. Jones, and B. Lustman: J. Appl. Phys., 1956, vol. 27, pp. 1270–83.

    Article  CAS  Google Scholar 

  21. M.L. Bleiberg: J. Nucl. Mater., 1959, vol. 2, pp. 182–90.

    Article  Google Scholar 

  22. D.D. Keiser, Jr.: Def. Diff. Forum, 2007, vol. 266, pp. 131–48.

    Article  CAS  Google Scholar 

  23. E. Perez, N. Hotaling, A. Ewh, D.D. Keiser, and Y.H. Sohn: Def. Diff. Forum, 2007, vol. 266, pp. 149–56.

    Article  CAS  Google Scholar 

  24. M.I. Mirandou, S. Balart, M. Ortiz, and M.S. Granovsky: J. Nucl. Mater., 2003, vol. 323, pp. 29–35.

    Article  CAS  Google Scholar 

  25. H. Palancher. P. Martin, V. Nassif, R. Tucoulou, O. Proux, J.-L. Hazemann, O. Tougait, E. Lahéra, F. Mazaudier, C. Valot, and S. Dubois: J. Appl. Cryst., 2007, vol. 40, pp. 1064–75.

    Article  CAS  Google Scholar 

  26. F. Mazaudier, C. Proye, and F. Hodaj: J. Nucl. Mater., 2008, vol. 377, pp. 476–85.

    Article  CAS  Google Scholar 

  27. M.I. Mirandou, S.F. Arico, S.N. Balart, and L.M. Gribaudo: Mater. Characterization, 2009, vol. 60, pp. 888–93.

    Article  CAS  Google Scholar 

  28. E. Perez, D.D. Keiser, and Y.H. Sohn: Def. Diff. Forum, 2009, vols. 289–292, pp. 41–49.

    Article  Google Scholar 

  29. D.D. Keiser, Jr., C.R. Clark, and M.K. Meyer: Scripta Mater., 2004, vol. 51, pp. 893–98.

    Article  CAS  Google Scholar 

  30. H. Noél, O. Tougait, and S. Dubois: J. Nucl. Mater., 2009, vol. 389, pp. 93–97.

    Article  Google Scholar 

  31. E. Perez, A. Ewh, J. Liu, B. Yuan, D.D. Keiser, Jr., and Y.H. Sohn: J. Nucl. Mater., 2009, vol. 394, pp. 160–65.

    Article  CAS  Google Scholar 

  32. P. Villars and L. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 1027–28.

    Google Scholar 

  33. G. Kimmel, V. Zenou, A. Sariel, and A. Munitz: Ben-Gurion University of the Negev, Beer Sheva, Israel, ICDD Grant-in-Aid, 1999.

  34. B.S. Borie, Jr.: J. Met., 1951, vol. 3, pp. 800–02.

    CAS  Google Scholar 

  35. O. Tougait and H. Noel: Intermetallics, 2004, vol. 12, pp. 219–23.

    Article  CAS  Google Scholar 

  36. W. Jeitschko: Westfalische Wilhelms University, Munster, Germany, ICDD Grant-in-Aid, 1996.

  37. S. Niemann and W. Jeitschko: J. Solid State Chem., 1995, vol. 116, pp. 131–35.

    Article  CAS  Google Scholar 

  38. V.Y. Zenou, G. Kimmel, C. Cotler, and M. Aizenshtein: J. Alloys Compd., 2001, vol. 329, pp. 189–94.

    Article  CAS  Google Scholar 

  39. W. Jeitschko: Westfalische Wilhelms University, Munster, Germany, ICDD Grant-in-Aid, 1994.

  40. S. Niemann and W. Jeitschko: J. Solid State Chem., 1995, vol. 114, pp. 337–41.

    Article  CAS  Google Scholar 

  41. M.S. Farkas, A.A. Bauer, and F.A. Rough: Trans. TMS-AIME, 1959, vol. 215, pp. 685–93.

    CAS  Google Scholar 

  42. D.B. Lee, K.H. Kim, and C.K. Kim: J. Nucl. Mater., 1997, vol. 250, pp. 79–82.

    Article  CAS  Google Scholar 

  43. D. Smith: Pennsylvania State University, University Park, PA, ICDD Grant-in-Aid, 1973.

  44. V.A. van Rooijen, E.W. van Royen, J. Vrijen, and S. Radelaar: Acta Metall., 1975, vol. 23, pp. 987–95.

  45. K. Osinski, A. W. Vriend, G.F. Bastin, and F.J.J. van Loo: Z. Metallkd., 1982, vol. 73 (4), pp. 258–61.

    CAS  Google Scholar 

  46. M.R. Rijnders, A.A. Kodentsov, C. Cserháti, J. van den Akker, and F.J.J. van Loo: Defect Diff. Forum, 1996, vols. 129–130, pp. 253–66.

    Article  Google Scholar 

  47. M.R. Rijnders, A.A. Kodentsov, J.A. van Beek, J. van den Akker, and F.J.J. van Loo: Solid State Ion., 1997, vol. 95, pp. 51–59.

    Article  CAS  Google Scholar 

  48. A.A. Kodentsov, M.R. Rijnders, and F.J.J. van Loo: Acta Mater., 1998, vol. 46 (18), pp. 6521–28.

    Article  CAS  Google Scholar 

  49. X. Su, C.L.S. Yang, F. Yin, and J. Wang: Scripta Mater., 2010, vol. 62, pp. 485–87.

    Article  CAS  Google Scholar 

  50. C. Wagner: J. Coll. Sci., 1950, vol. 5, pp. 85–97.

    Article  CAS  Google Scholar 

  51. J. Gan, D.D. Keiser, Jr., D.M. Wachs, A.B. Robinson, B.D. Miller, and T.R. Allen: J. Nucl. Mater., 2010, vol. 396, pp. 234–39.

    Article  CAS  Google Scholar 

  52. E. Perez, B. Yao, Y.H. Sohn, and D.D. Keiser, Jr.: Proc. 31st Int. Meeting on Reduced Enrichment for Research and Test Reactors (RERTR 2009), Nov. 1–5, 2009, Beijing, INL/CON-09-17105.

  53. S. Niemann and W. Jeitschko: Z. Metallkd., 1994, vol. 85 (5), pp. 345–49.

    CAS  Google Scholar 

  54. L. Brewer and R.W. Lamoreaux: in Binary Alloy Phase Diagrams, 1st ed., T.B. Massalski, ed., ASM INTERNATIONAL, Metals Park, OH, 1986, p. 133.

  55. N. Saunders and T.B. Massalski: in Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASM INTERNATIONAL, Materials Park, OH, 1990, p. 174.

  56. C.K. Rhee, S.I. Pyun, and I.H. Kuk: J. Nucl. Mater., 1991, vol. 184, pp. 161–66.

    Article  CAS  Google Scholar 

  57. M. Ugajin, M. Akabori, A. Itoh, N. Ooka, and Y. Nakakura: J. Nucl. Mater., 1997, vol. 248, pp. 204–08.

    Article  CAS  Google Scholar 

  58. J.W. Richardson, Jr., R.C. Birtcher, and S.K. Chan: Physica B, 1998, vols. 241–243, pp. 390–92.

    Google Scholar 

  59. M.R. Finlay, G.L. Hofman, J. Rest, and A.B. Robinson: J. Nucl. Mater., 2004, vol. 325, pp. 118–28.

    Article  CAS  Google Scholar 

  60. Y.S. Kim, G.L. Hofman, J. Rest, and A.B. Robinson: J. Nucl. Mater., 2009, vol. 389, pp. 443–49.

    Article  CAS  Google Scholar 

  61. H.J. Ryu, Y.S. Kim, G.L. Hofman, J.M. Park, and C.K. Kim: J. Nucl. Mater., 2006, vol. 358, pp. 52–56.

    Article  CAS  Google Scholar 

  62. J. Allenou, H. Palancher, X. Itis, M. Cornen, O. Tougait, R. Tucoulou, E. Welcomme, P. Martin, C. Valot, F. Charollais, M.C. Anselmet, and P. Lemoine: J. Nucl. Mater., 2010, vol. 399, pp. 189–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with financial support from the United States Department of Energy (Grant No. DE-AC07-05ID14517) through Subcontract No. 00051953 administered by Battelle Energy Alliances, LLC, and Idaho National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Sohn.

Additional information

Manuscript submitted June 1, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, E., Keiser, D.D. & Sohn, Y.H. Phase Constituents and Microstructure of Interaction Layer Formed in U-Mo Alloys vs Al Diffusion Couples Annealed at 873 K (600 °C). Metall Mater Trans A 42, 3071–3083 (2011). https://doi.org/10.1007/s11661-011-0733-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0733-9

Keywords

Navigation