Influence of Intensive Melt Shearing on the Microstructure and Mechanical Properties of an Al-Mg Alloy with High Added Impurity Content



We have investigated the influence of melt conditioning by intensive shearing on the mechanical behavior and microstructure of Al-Mg-Mn-Fe-Cu-Si alloy sheet produced from a small book mold ingot with high added impurity content. The melt conditioned ingot has fine grains throughout its cross section, whereas a conventionally cast ingot, without melt shearing, has coarser grains and shows a wider variation of grain size. Both needle-shaped and coarse Chinese script iron bearing intermetallic particles are found in the microstructure at the center of the conventionally processed ingot, but for the melt conditioned ingot, only fine Chinese script intermetallic particles are observed. In addition to the iron bearing intermetallics, Mg2Si particles are also observed. The ingots were rolled to thin sheet and solution heat treated (SHT). During rolling, the iron-based intermetallics and Mg2Si particles are broken and aligned along the rolling direction. Yield strength (YS), ultimate tensile strength (UTS), and elongation of the intensively melt sheared and processed sheet are all improved compared to the conventionally cast and processed sheet. Fractographic analysis of the tensile fracture surfaces shows that the clustered and coarse iron bearing intermetallic particles are responsible for the observed reduction in mechanical properties of the conventionally cast sheet. We have shown that by refining the initial microstructure of the ingot by intensive shear melt conditioning, it is possible to achieve improved mechanical properties at the final sheet gage of an AlMgMn alloy with a high content of impurities.


  1. 1.
    G.B. Burger, A.K. Gupta, P.W. Jeffrey, and D.J. Lloyd: Mater. Charact., 1994, vol. 35, pp. 23–39.CrossRefGoogle Scholar
  2. 2.
    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge (2000) Mater. Sci. Eng., 280A: 37–49.Google Scholar
  3. 3.
    S.A. Court, K.M. Gatenby, and D.J. Lloyd: Mater. Sci. Eng., 2001, vols. 319A–321A, pp. 443–47.Google Scholar
  4. 4.
    J. Sarkar, T.R.J. Kutty, D.S. Wilkinson, J.D. Embury, and J.D. Lloyd: Mater. Sci. Eng., 2001, vol. 316, pp. 52–59.CrossRefGoogle Scholar
  5. 5.
    F. Ozturk, S. Toros, and H. Pekel: Mater. Sci. Technol., 2009, vol. 25, pp. 919–24.CrossRefGoogle Scholar
  6. 6.
    S.A. Court, K.M. Gatenby, and D.J. Lloyd: Mater. Sci. Eng., 2001, vols. 319A–321A, pp. 443–47.Google Scholar
  7. 7.
    D.J. Lloyd and S.A. Court: Mater. Sci. Technol., 2003, vol. 19, pp. 1349–54.CrossRefGoogle Scholar
  8. 8.
    T. Komatsubara, T. Muramatsu, and M. Matsuo: European Patent No. 0259700B1, 1990.Google Scholar
  9. 9.
    T. Fujita, K. Hasegawa, and M. Suga: European Patent No. 0616044A2, 1994.Google Scholar
  10. 10.
    O. Umezawa, M. Nakamoto, Y. Osawa, K. Suzuki, and S. Kumai: Mater. Trans., 2005, vol. 46, pp. 2609–15.CrossRefGoogle Scholar
  11. 11.
    L.F. Mondolfo: Al Alloys: Structure and Properties, Butterworths, London, 1976.Google Scholar
  12. 12.
    L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Al Alloys, Wrought Alloys, Skanaluminium, Oslo, Norway, 1986, vol. 1, pp. 113–23.Google Scholar
  13. 13.
    S. Martinez De La Puente, B. Verlinden, and Delaey: J. Mater. Sci., 1994, vol. 29, pp. 6167–74.Google Scholar
  14. 14.
    F.H. Samuel, A.M. Samuel, H.W. Doty, and S. Valtierra: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 115–29.CrossRefGoogle Scholar
  15. 15.
    Y.J. Li and L. Arnberg: Acta Mater., 2004, vol. 52, pp. 2673–81.CrossRefGoogle Scholar
  16. 16.
    C.A. Ahravci and M.O. Pekguleryuz: CALPHAD, 1998, vol. 22, pp. 147–55.CrossRefGoogle Scholar
  17. 17.
    C.M. Allen, K.A.Q. O’Reilly, B. Cantor, and P.V. Evans: Progr. Mater. Sci., 1998, vol. 43, pp. 89–70.CrossRefGoogle Scholar
  18. 18.
    K. Spencer, S.F. Corbin, and D.J. Lloyd: Mater. Sci. Eng., 2002, vol. 325A, pp. 394–04.Google Scholar
  19. 19.
    X. Fang, G. Shao, Y.Q. Liu, and Z. Fan: Mater. Sci. Eng., 2007, vols. 445–446A, pp. 65–72.Google Scholar
  20. 20.
    G. Liu, Y. Wang, and Z. Fan: Mater. Sci. Eng., 2008, vol. 472A, pp. 251–57.Google Scholar
  21. 21.
    R. Haghayeghi, Y. Liu, and Z. Fan: Solid State Phen., 2008, vols. 141–143, pp. 403–08.Google Scholar
  22. 22.
    Z. Fan, M. Xia, H. Shang, G. Liu, J.B. Patel, Z. Bian, I. Bayandorian, Y. Wang, H.T. Li, and G.M. Scamans: Int. J. Cast Met. Res., 2009, vol. 22, pp. 103–07.CrossRefGoogle Scholar
  23. 23.
    Z. Fan, Y. Wang, Z.F. Zhang, M. Xia, H.T. Li, J. Xu, L. Granasy, and G.M. Scamans: Int. J. Cast Met. Res., 2009, vol. 22, pp. 318–22.CrossRefGoogle Scholar
  24. 24.
    Z. Fan, Y. Wang, M. Xia, and S. Arumuganathar: Acta Mater., 2009, vol. 27, pp. 4891–4901.CrossRefGoogle Scholar
  25. 25.
    Y. Zuo, H. Li, M. Xia, B. Jiang, G.M. Scamans, and Z. Fan: Scripta Mater., 2011, vol. 64, pp. 209–12.CrossRefGoogle Scholar
  26. 26.
    Z. Fan, M.J. Bevis, and S. Ji: PCT patent WO 01/21343 A1, 1999.Google Scholar
  27. 27.
    Z. Fan, S. Ji, and M.J. Bevis: PCT patent WO 02/13993 A1, 2000.Google Scholar
  28. 28.
    H. Hlim, D.S. Wilkinson, and M. Niewczas: Acta Mater., 2007, vol. 55, pp. 4151–60.CrossRefGoogle Scholar
  29. 29.
    B. Dutta and M. Rettenmayr: Mater. Sci. Eng., 2000, vol. 283, pp. 218–24.CrossRefGoogle Scholar
  30. 30.
    Z. Chen and M.J. Worswick: Mater. Sci. Eng., 2008, vols. 483–484, pp. 99–01.Google Scholar
  31. 31.
    C.I.A. Thomson, M.J. Worswick, A.K. Pilkey, D.J. Lloyd (2003) J. Mech. Phys. Solids, 51: 127–46.CrossRefGoogle Scholar
  32. 32.
    G. Scamans and Z. Fan: Aluminum, 2009, vol. 21, pp. 19–21.Google Scholar
  33. 33.
    D. Liang and H. Jones: Z. Metallkd., 1992, vol. 83, pp. 224–26.Google Scholar
  34. 34.
    X. Cao and J. Campbell: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1409–19.CrossRefGoogle Scholar
  35. 35.
    X. Cao and J. Campbell: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1425–35.CrossRefGoogle Scholar
  36. 36.
    W. Khalifa, F.H. Samuel, J.E. Gruzleski, H.W. Doty, and S. Valtierra: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1017–32.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2011

Authors and Affiliations

  • S. Kumar
    • 1
  • N. Hari Babu
    • 1
  • G. M. Scamans
    • 1
  • Z. Fan
    • 1
  1. 1.The EPSRC Centre—LiME, BCASTBrunel UniversityUxbridgeUnited Kingdom

Personalised recommendations