Skip to main content

Advertisement

Log in

Phase Transformation Behavior of Porous TiNi Alloys Produced by Powder Metallurgy Using Magnesium as a Space Holder

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Porous TiNi alloys with porosities in the range of 51 to 73 pct were prepared successfully applying a new powder metallurgy fabrication route in which magnesium was used as a space holder, resulting in either single austenite phase or a mixture of austenite and martensite phases dictated by the composition of the starting powders, but entirely free from secondary brittle intermetallics, oxides, nitrides, and carbonitrides. Since transformation temperatures are very sensitive to composition, deformation, and oxidation, for the first time, transformation temperatures of porous TiNi alloys were investigated using chemically homogeneous specimens in as-sintered and aged conditions eliminating secondary phase, contamination, and deformation effects. It was found that the porosity content of the foams has no influence on the phase transformation temperatures both in as-sintered and aged conditions, while deformation, oxidation, and aging treatment are severely influential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. B.Y. Li, L.J. Rong, and Y.Y. Li: Mater. Sci. Eng. A, 2000, vol. 281, pp. 169–75.

    Article  Google Scholar 

  2. D.C. Lagoudas and E.L. Vandygriff: J. Intell. Mater. Syst. Struct., 2002, vol. 13, pp. 837–50.

    Article  CAS  Google Scholar 

  3. B. Yuan, C.Y. Chung, X.P. Zhang, M.Q. Zeng, and M. Zhu: Smart Mater. Struct., 2005, vol. 14, pp. S201–S206.

    Article  CAS  Google Scholar 

  4. B. Yuan, X.P. Zhang, C.Y. Chung, M.Q. Zeng, and M. Zhu: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 755–61.

    Article  CAS  Google Scholar 

  5. S. Wu, C.Y. Chung, X. Liu, P.K. Chu, J.P.Y. Ho, C.L. Chu, Y.L. Chan, K.W.K. Yeung, W.W. Lu, K.M.C. Cheung, and K.D.K. Luk: Acta Mater., 2007, vol. 55, pp. 3437–51.

    Article  CAS  Google Scholar 

  6. A. Bansiddhi and D.C. Dunand: Intermetallics, 2007, vol. 15, pp. 1612–22.

    Article  CAS  Google Scholar 

  7. A. Bansiddhi and D.C. Dunand: Acta Biomater., 2008, vol. 4, pp. 1996–2007.

    Article  CAS  Google Scholar 

  8. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, and D.C. Dunand: Acta Biomater., 2008, vol. 4, pp. 773–82.

    Article  CAS  Google Scholar 

  9. B.Y. Li, L.J. Rong, Y.Y. Li, and V.E. Gjunter: Acta Mater., 2000, vol. 48, pp. 3895–3904.

    Article  CAS  Google Scholar 

  10. C.L. Chu, C.Y. Chung, P.H. Lin, and S.D. Wang: J. Mater. Process. Technol., 2005, vol. 169, pp. 103–07.

    Article  CAS  Google Scholar 

  11. C.Y. Chung, C.L. Chu, and S.D. Wang: Mater. Lett., 2004, vol. 58, pp. 1683–86.

    Article  CAS  Google Scholar 

  12. C.W. Goh, Y.W. Gu, C.S. Lim, and B.Y. Tay: Intermetallics, 2007, vol. 15, pp. 461–67.

    Article  CAS  Google Scholar 

  13. G. Tosun, L. Özler, M. Kaya, and N. Orhan: J. Alloys Compd., 2009, vol. 487, pp. 605–11.

    Article  CAS  Google Scholar 

  14. C. Zanotti, P. Giuliani, P. Bassani, Z, Zhang, and A. Chrysanthou: Intermetallics, 2010, vol. 18, pp. 14–21.

    Article  CAS  Google Scholar 

  15. B. Yuan, C.Y. Chung, P. Huang, and M. Zhu: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 657–60.

    Google Scholar 

  16. X.P. Zhang, H.Y. Liu, B. Yuan, and Y.P. Zhang: Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 170–73.

    Google Scholar 

  17. S.L. Zhu, X.J. Yang, D.H. Fu, L.Y. Zhang, C.Y Li, and Z.D. Cui: Mater. Sci. Eng. A, 2005, vol. 408, pp. 264–68.

    Article  Google Scholar 

  18. B. Bertheville: Biomaterials, 2006, vol. 27, pp. 1246–50.

    Article  CAS  Google Scholar 

  19. S.K. Sadrnezhaad, H. Arami, H. Keivan, and R. Khalifezadeh: Mater. Manuf. Process., 2006, vol. 21, pp. 727–35.

    Article  CAS  Google Scholar 

  20. S.L. Zhu, X.J. Yang, F. Hu, S.H. Deng, and Z.D. Cui: Mater. Lett., 2004, vol. 58, pp. 2369–73.

    Article  CAS  Google Scholar 

  21. Y. Zhao, M. Taya, Y, Kang, and A. Kawasaki: Acta Mater., 2005, vol. 53, pp. 337–43.

    Article  CAS  Google Scholar 

  22. Y.P. Zhang, B. Yuan, M.Q. Zeng, C.Y. Chung, and X.P. Zhang: J. Mater. Process. Technol., 2007, vols. 192–193, pp. 439–42.

    Article  Google Scholar 

  23. Y.P. Zhang, D.S. Li, and X.P. Zhang: Scripta Mater., 2007, vol. 57, pp. 1020–23.

    Article  CAS  Google Scholar 

  24. D.S. Li, Y.P. Zhang, G. Eggeler, and X.P. Zhang: J. Alloys Compd., 2009, vol. 470, pp. L1–L5.

    Article  CAS  Google Scholar 

  25. D.S. Grummon, J.A. Shaw, and A. Gremillet: Appl. Phys. Lett., 2003, vol. 82, pp. 2727–29.

    Article  CAS  Google Scholar 

  26. H. Guoxin, Z. Lixiang, F. Yunliang, and L. Yanhong: J. Mater. Process. Technol., 2008, vol. 206, pp. 395–99.

    Article  Google Scholar 

  27. B. Yuan, X.P. Zhang, C.Y. Chung, and M. Zhu: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 585–88.

    Google Scholar 

  28. H. Li, B. Yuan, Y. Gao, C.Y. Chung, and M. Zhu: J. Mater. Sci., 2009, vol. 44, pp. 875–81.

    Article  CAS  Google Scholar 

  29. P. Bassani, P. Giuliani, A. Tuissi, and C. Zanotti: J. Mater. Eng. Perform., 2009, vol. 18, pp. 594–99.

    Article  CAS  Google Scholar 

  30. A. Bansiddhi and D.C. Dunand: J. Mater. Eng. Perform., 2011, DOI: 10.1007/s11665-010-9827-6.

  31. B. Yuan, C.Y. Chung, and M. Zhu: Mater. Sci. Eng. A, 2004, vol. 382, pp. 181–87.

    Article  Google Scholar 

  32. C.L. Chu, P.H. Lin, and C.Y. Chung: J. Mater. Sci., 2005, vol. 40, pp. 773–76.

    Article  CAS  Google Scholar 

  33. C.L. Chu, C.Y. Chung, and P.H. Lin: Mater. Sci. Eng. A, 2005, vol. 392, pp. 106–11.

    Article  Google Scholar 

  34. H.C. Jiang and L.J. Rong: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 883–86.

    Google Scholar 

  35. S.L. Wu, X.M. Liu, P.K. Chu, C.Y. Chung, C.L. Chu, and K.W.K. Yeung: J. Alloys Compd., 2008, vol. 449, pp. 139–43.

    Article  CAS  Google Scholar 

  36. B.Y. Li, L.J. Rong, X.H. Luo, and Y.Y. Li: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2753–56.

    Article  CAS  Google Scholar 

  37. O. Scalzo, S. Turenne, M. Gauthier, and V. Brailovski: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2061–70.

    Article  CAS  Google Scholar 

  38. T. Aydoğmuş and Ş. Bor: J. Alloys Compd., 2009, vol. 478, pp. 705–10.

    Article  Google Scholar 

  39. ASTM F 2004-05, Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis, ASTM, Philadelphia, PA, 2010.

  40. D.A. Miller and D.C. Lagoudas: Mater. Sci. Eng. A, 2001, vol. 308, pp. 161–75.

    Article  Google Scholar 

  41. H. Funakubo: Shape Memory Alloys, 1st ed., Gordon and Breach Science Publishers S.A., Amsterdam, 1987, pp. 101–15.

    Google Scholar 

  42. K. Otsuka and C.M. Wayman: Shape Memory Materials, 1st ed., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 49–96.

    Google Scholar 

  43. V.G. Chuprina and I.M. Shalya: Powder Metall. Met. Cer., 2002, vol. 41, pp. 85–89.

    Article  CAS  Google Scholar 

  44. I. Barin: Thermochemical Data of Pure Substances, 1st ed., VCH Verlagsgeselischaft, Weinheim, 1989, pp. 1083–1546.

    Google Scholar 

  45. G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, and K. Otsuka: Acta Mater., 2004, vol. 52, pp. 4351–62.

    Article  CAS  Google Scholar 

  46. J. Khalil-Allafi, X. Ren, and G. Eggeler: Acta Mater., 2002, vol. 50, pp. 793–803.

    Article  CAS  Google Scholar 

  47. J. Khalil-Allafi, A. Dlouhy, and G. Eggeler: Acta Mater., 2002, vol. 50, pp. 4255–74.

    Article  CAS  Google Scholar 

  48. K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.

    Article  CAS  Google Scholar 

  49. K. Gall, K. Juntunen, H.J. Maier, H. Sehitoglu, and Y.I. Chumlyakov: Acta Mater., 2001, vol. 49, pp. 3205–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this research by the Faculty Development Program (ÖYP) at Middle East Technical University with DPT-BAP (Grant No. BAP-08-11-DPT2002K120510) and The Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 108M118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Aydoğmuş.

Additional information

Manuscript submitted October 7, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydoğmuş, T., Bor, E.T. & Bor, Ş. Phase Transformation Behavior of Porous TiNi Alloys Produced by Powder Metallurgy Using Magnesium as a Space Holder. Metall Mater Trans A 42, 2547–2555 (2011). https://doi.org/10.1007/s11661-011-0714-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0714-z

Keywords

Navigation