Skip to main content
Log in

Corrosion-Resistant Ti-xNb-xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. U. Kamachi Mudali, R.K. Dayal, and J.B. Gnanamoorthy: J. Nucl. Mater., 1993, vol. 203, pp. 73–82.

    Article  Google Scholar 

  2. B. Raj and U. Kamachi Mudali: Prog. Nucl. Energy, 2006, vol. 48, pp. 273–313.

  3. T. Furuya, H. Satoh, K. Shimogori, Y. Nakamura, K. Matsumoto, Y. Komori, and S. Takeda: Proc. Am. Nucl. Soc. Int. Top Meet, 1984, pp. 239–48.

  4. K. Kiuchi, M. Hayashi, H. Hayakawa, M. Sakairi, and M. Kikuchi: Proc. 4th Int. Conf. on Nuclear Fuel Reprocessing and Waste Management, Record ‘94, London, Apr. 1994, vol. 3, pp. 23–27.

  5. J. M. Donachie, Jr.: Titanium: A Technical Guide, 2nd ed., ASM INTERNATIONAL, Metals Park, OH, 2000, pp. 123–25.

    Google Scholar 

  6. A. Ravi Shankar, R. Mythili, V.R. Raju, S. Saroja, R.K. Dayal, M. Vijayalakshmi, and V.S. Raghunathan: Proc. Conf. on Materials and Technologies for Nuclear Fuel Cycle, SERC, Chennai, Dec. 15–16, 2003.

    Google Scholar 

  7. A. Ravi Shankar, R.K. Dayal, R. Balasubramaniam, V.R. Raju, R. Mythili, S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan: J. Nucl. Mater., 2006, vol. 372, pp. 277–86.

  8. D.F. Steele: Atom, 1986, vol. 353, pp. 5–10.

  9. T. Furuya, J. Kawafuku, H. Satoh, K. Shimogori, A. Aoshima, and S. Takeda: ISIJ Int., 1991, vol. 31 (2), pp. 189–93.

  10. K. Kiuchi, H. Hayakawa, Y. Takagi, and M. Kikuchi: Proc. 4th Int. Conf. on Nuclear Fuel Reprocessing and Waste Management, Record ‘94, London, Apr. 1994, vol. 3, pp. 23–27.

  11. J.K. Gregory and H.G. Brokmeier: Mater. Sci. Eng. A, 1995, vol. 203, pp. 365–72.

    Article  Google Scholar 

  12. J.A.S. Green, B.W. Gmson, and W.F. Westerbaan: Desalination, 1971, vol. 22, pp. 359–68.

    Article  Google Scholar 

  13. M. Geetha, U. Kamachi Mudali, A.K. Gogia, R. Asokamani, and B. Raj: Corros. Sci., 2004, vol. 46, pp. 877–92.

  14. B. Raj, R. Natarajan, and V.S. Raghunathan: Proc. Conf. on Materials and Technologies for Nuclear Fuel Cycle (Covering Materials, Robotics, Process Instrumentation and Inspection Technologies), SERC, Chennai, Dec. 15–16, 2003, B. Raj, K. Bhanu Sankara Rao, P. Shankar, and N. Murali, eds., Board of Research in Nuclear Sciences, Mumbai, 2003.

  15. R. Mythili, A. Ravi Shankar, S. Saroja, V.R. Raju, M. Vijayalakshmi, R.K. Dayal, V.S. Raghunathan, and R. Balasubramaniam: J. Mater. Sci., 2007, vol. 42, pp. 5923–35.

    Article  Google Scholar 

  16. K. Kapoor, Kain Vivekanand, T. Gopal Krishna, T. Sanyal, and P.K. De: J Nucl. Mater., 2003, vol. 322, pp. 36–44.

  17. C.K. Gupta and A.K. Suri: Extractive Metallurgy of Niobium, CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

  18. V. Anbarasan, B. Jeya Ganesh, S. Raju, S. Murugesan, E. Mohandas, U. Kamachi Mudali, and G. Manivasagam: J. Alloys Compd., 2008, vol. 463, pp. 160–67.

  19. T.-L. Yau: 4th ASTM Symp. on Titanium and Zirconium in Industrial Applications, ASTM International, Philadelphia, PA, Oct. 10–11, 1984. pp. 57–68.

  20. Corrosion Handbook, DECHEMA, Frankfurt, Germany, 2001, pp. 377–93.

  21. H. Chauve, J. Decours, R. Demay, M. Pelras, J. Simonnet, and G. Turluer: Components, IAEA-TECDOC-421, International Atomic Energy Agency, Vienna, 1987, pp. 165–92.

  22. Y.H. Jeong, H.G. Kim, D.J. Kim, B.K. Choi, and J.H. Kim: J. Nucl. Mater., 2003, vol. 323, pp. 72–80.

    Article  CAS  Google Scholar 

  23. D.A. Jones: Principle and Prevention of Corrosion, Maxwell Macmillan, New York, NY, 1992, p. 281.

    Google Scholar 

  24. G. Manivasagam, U. Kamachi Mudali, R. Asokamani, and B. Raj: Corr. Rev., 2003, vol. 21 (2–3), pp. 124–59.

  25. R. Mythili, U. Thomas Paul, S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan: Mater. Sci. Eng. A, 2005, vol. 390, pp. 289–312.

    Google Scholar 

  26. J. Eickmans, R. Holm, G. Mueller, E.M. Horn, and R. Droste: Surf. Interface Anal., 1990, vol. 16 (1–12), pp. 255–70.

    Google Scholar 

  27. M. Geetha, A.K. Singh, A.K. Gogia, and R. Asokamani: J. Alloys Compd., 2004, vol. 384, pp. 131–44.

    Article  CAS  Google Scholar 

  28. Witton Mill: IMI Handbook, Corrosion Resistance of Titanium, Imperial Metal Industries, Birmingham, United Kingdom.

  29. U. Kamachi Mudali, V.R. Raju, R.K. Dayal, B. Raj, and K. Raghupathy: Mater. Perform. NACE, 2008, vol. 47, pp. 64–69.

  30. U. Kamachi Mudali, R.K. Dayal, and J.B. Gnanamoorthy: J. Mater. Eng. Process., 1995, vol. 4, pp. 756–60.

    Article  Google Scholar 

  31. C.S. Brossia and G.A. Cragnolino: Corrosion, 2001, vol. 57 (9), p. 768.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are appreciative to Drs. T. Nandhi and A.K. Singh, DMRL (Hyderabad), for their help in the alloy casting. They also acknowledge the help rendered by A. Ravi Shankar, S. Raju, and P. Parmaeswarn, IGCAR, during the characterization of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kamachi Mudali.

Additional information

Manuscript submitted November 16, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manivasagam, G., Anbarasan, V., Kamachi Mudali, U. et al. Corrosion-Resistant Ti-xNb-xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants. Metall Mater Trans A 42, 2685–2695 (2011). https://doi.org/10.1007/s11661-011-0701-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0701-4

Keywords

Navigation