Skip to main content
Log in

Domain Reorientation as a Damping Mechanism in Ferroelastic-Reinforced Metal Matrix Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The damping behavior of a model ferroelastic-reinforced–metal matrix composite (FR-MMC) system was examined through the incorporation of barium titanate (BaTiO3) particles into a Cu-10 wt pct Sn (bearing bronze) matrix. The damping properties of the resulting FR-MMC were investigated vs frequency, temperature (above and below the Curie temperature of the ferroelastic reinforcement), and number of strain cycles. Dynamic mechanical analysis (DMA) indicates that the incorporation of the ferroelastic-capable reinforcement significantly augments the damping capability relative to the matrix alone, and also with respect to the damping that would result from the presence of passive composite reinforcements. Neutron diffraction data demonstrate a strong correlation of domain reorientation activity to imposed stress level and demonstrate a degree of reversibility important to the potential practical application of this mechanism of damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The terms “domain reorientation,” “domain switching,” and “domain twinning” are used interchangeably in the literature in their reference to the same crystallographic transformation event in ferroelectric-capable materials.

References

  1. A. Wolfenden and J.M. Wolla: in Metal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic Press, San Diego, CA, 1991, pp. 287–355.

  2. W. Zhang, J.M. Kim, and N. Koratkar: Smart Mater. Struct., 2003, vol. 12, pp. 642–46.

    Article  CAS  Google Scholar 

  3. K.B. Hathaway, A.E. Clark, and J.P. Teter: Metall. Trans. A, 1995, vol. 26A, pp. 2797–2801.

    Article  CAS  Google Scholar 

  4. G.P. Carman, G. McKnight, P. Chaplya, and N. Nersessian: “Magnetostrictive Particulate Composites for Damping,” Air Force Research Laboratories Technical Report AFRL-SR-AR-TR-04, University of California, Los Angeles, CA, 2004.

  5. Y. Suzuki, K. Uchino, H. Gouda, M. Sumita, R.E. Newnham, and A.R. Ramachandran: J. Ceram. Soc. Jpn., 1991, vol. 99, pp. 1135–37.

    Article  CAS  Google Scholar 

  6. O.J. Aldraihem, A. Baz, and T.S. Al-Saud: Mech. Adv. Mater. Struct., 2007, vol. 14, pp. 413–26.

    Article  CAS  Google Scholar 

  7. A.C. Goff, A.O. Aning, and S.L. Kampe: TMS Lett., 2004, vol. 1, pp. 59–60.

    CAS  Google Scholar 

  8. A.C. Goff: Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003; accessible at http://scholar.lib.vt.edu/theses/available/etd-05212003-205819.

  9. M.P. McNeal, S. Jang, and R.E. Newnham: J. Appl. Phys., 1998, vol. 83, pp. 3288–97.

    Article  CAS  Google Scholar 

  10. R. Amatulu, R.O. Claus, J.B. Mecham, and D.J. Inman: J. Intell. Mater. Syst. Struct., 2005, vol. 15, pp. 463–68.

    Article  Google Scholar 

  11. S. Kim, T. Chung, and D. Kim: J. Eur. Ceram. Soc., 1993, vol. 12 (2), pp. 147–51.

    Article  CAS  Google Scholar 

  12. S.-Y. Cheng, N.-J. Ho, and H.-Y. Lu: J. Am. Ceram. Soc., vol. 91 (11), pp. 3721–27.

  13. G. Arlt: J. Mater. Sci., 1990, vol. 25, pp. 2655–66.

    Article  CAS  Google Scholar 

  14. J.A. Forrester, E.H. Kisi, and A.J. Studer: J. Eur. Ceram. Soc., 2005, vol. 25, pp. 447–54.

    Article  CAS  Google Scholar 

  15. B.D. Poquette, J.P. Schultz, T.A. Asare, A.O. Aning, and S.L. Kampe: in Science and Technology of Powder Materials: Synthesis, Consolidation, and Properties, TMS, Warrendale, PA, LL. Shaw, F.D.S. Marquis, E.A. Olevsky, I.E. Anderson, M.G. McKimpson, J.P. Singh, and J.H. Adair, eds., 2005, pp. 119–26.

  16. T.A. Asare, J.P. Schultz, B.D. Poquette, A.O. Aning, and S.L. Kampe: in Science and Technology of Powder Materials: Synthesis, Consolidation, and Properties, TMS, Warrendale, PA, L.L. Shaw, F.D.S. Marquis, E.A. Olevsky, I.E. Anderson, M.G. McKimpson, J.P. Singh, and J.H. Adair, eds., 2005, pp. 189–94.

  17. T.A. Asare: PhD Dissertation, Virginia Polytechnic Institute & State University, Blacksburg, VA, 2007, http://scholar.lib.vt.edu/theses/available/etd-10062007-151616/.

  18. B.D. Poquette: PhD Dissertation, Virginia Polytechnic Institute & State University, Blacksburg, VA, 2007, http://scholar.lib.vt.edu/theses/available/etd-10022007-124455.

  19. J.P. Schultz, T.A. Asare, B.D. Poquette, and S.L. Kampe: U.S. Patent 7,586,233, issued Sept. 8, 2009.

  20. S.L. Kampe, J.P. Schultz, A.O. Aning, A.C. Goff, and J.S. Franklin: U.S. Patent 7,126,257, Oct. 2006.

  21. J. Calderon-Moreno and M. Popa: Mater. Sci. Eng. A, 2002, vol. A336, pp. 124–28.

    CAS  Google Scholar 

  22. F. Davi and R. Rizzoni: J. Mech. Phys. Sol., 2004, vol. 52, pp. 113–44.

    Article  CAS  Google Scholar 

  23. W.S. Kreher: J. Mech. Phys. Sol., 2002, vol. 50, pp. 1029–50.

    Article  CAS  Google Scholar 

  24. Y. Ma, E.H. Kisi, and S.J. Kennedy: J. Am. Ceram. Soc., 2001, vol. 84, pp. 399–405.

    Article  CAS  Google Scholar 

  25. Los Alamos Science, N.G. Cooper, ed., Los Alamos National Laboratories, Los Alamos, NM, 1990, No. 19.

  26. J.E. Daniels, M.V. Manuel, C.W. Brink, and J.L. Jones: Scripta Metall., 2009, vol. 61, pp. 391–94.

    Article  CAS  Google Scholar 

  27. T.A. Asare, J.P. Schultz, B.D. Poquette, and S.L. Kampe: 2011, unpublished research.

  28. T. Lee and I.A. Aksay: Cryst. Growth Des., 2001, vol. 1, pp. 401–19.

    Article  CAS  Google Scholar 

  29. S.W. Lu, B.I. Lee, Z.L. Wang, and W.D. Samuels: J. Cryst. Growth, 2000, vol. 219, pp. 269–76.

    Article  Google Scholar 

  30. W.Y. Shih, W.H. Shih, and I.A. Aksay: Phys. Rev. B: Condens. Matter, 1994, vol. 50, pp. 15575–85.

    Article  CAS  Google Scholar 

  31. X.H. Liu, W.Y. Shih, and W.H. Shih: J. Am. Ceram. Soc., 1997, vol. 80, pp. 2781–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the Army Research Office under Grant No. DAAD19-01-1-0714, Dr. William Mullins, ARO contract manager, and the Material Science and Engineering Department, Virginia Tech. The support of the LANSCE through a user grant is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Kampe.

Additional information

Manuscript submitted September 8, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poquette, B.D., Asare, T.A., Schultz, J.P. et al. Domain Reorientation as a Damping Mechanism in Ferroelastic-Reinforced Metal Matrix Composites. Metall Mater Trans A 42, 2833–2842 (2011). https://doi.org/10.1007/s11661-011-0676-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0676-1

Keywords

Navigation